idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.01.2013 16:59

Die schwache Seite des Protons

Dagmar Baroke Abteilung Kommunikation
Paul Scherrer Institut (PSI)

    Ein internationales Forschungsteam hat mit grosser Genauigkeit bestimmt, wie das Proton an der schwachen Wechselwirkung – eine der vier fundamentalen Kräfte der Natur – teilhat. Die Ergebnisse bestätigen die theoretischen Voraussagen des Standardmodells der Teilchenphysik. In dem Experiment wurde beobachtet, mit welcher Wahrscheinlichkeit Myonen von Protonen eingefangen werden – ein Prozess, der von der schwachen Wechselwirkung bestimmt wird. Das Experiment wurde am Paul Scherrer Institut PSI durchgeführt, dem einzigen Ort weltweit, an dem genügend Myonen erzeugt werden, damit es in einer realistischen Zeit durchgeführt werden kann.

    Die Forscher haben darauf geachtet, nicht nur die zahlreichen technischen Fehlerquellen auszuschliessen, sondern auch die „psychologischen“. Durch ein trickreiches Verfahren konnten sie ausschliessen, dass sie sich bei der Auswertung der Messergebnisse unbewusst von den bekannten theoretischen Voraussagen beeinflussen liessen. Die moderne Beschreibung des untersuchten Prozesses beruht auf Ideen, die vor 50 Jahren vom amerikanischen Physiker Y. Nambu entwickelt wurden, der 2008 dafür den Physiknobelpreis erhalten hat. Erst jetzt war es möglich, die theoretischen Vorhersagen mit der notwendigen Genauigkeit zu überprüfen. Das Projekt zeigt, dass die Teilchenphysik neben Experimenten an den grossen Beschleunigeranlagen im Hochenergiebereich auch Untersuchungen mit hohen Teilchenzahlen braucht, für die das PSI die besten Voraussetzungen bietet. Das Ergebnis ist im Fachjournal Physical Review Letters erschienen. Das American Institute of Physics hat das Ergebnis mit einer Zusammenfassung auf der Webseite gewürdigt.

    „Die schwache Wechselwirkung ist eine der vier Grundkräfte der Natur. Auch wenn sie nicht Teil unserer Alltagserfahrung ist, so ist sie doch an vielen wichtigen Vorgängen beteiligt wie der Energieerzeugung in der Sonne oder dem Zerfall von Teilchen“, führt Klaus Kirch, Leiter des Labors für Teilchenphysik am PSI, aus. Zudem ist sie unverzichtbarer Bestandteil des Standardmodells, der zurzeit besten Beschreibung der Welt der Elementarteilchen. Nun hat ein internationales Forscherteam aus den USA, Russland, Belgien und der Schweiz genau untersucht, wie das Proton an der schwachen Wechselwirkung teilhat. Konkret hat man die „pseudoskalare Kopplung“ bestimmt, eine der Kopplungskonstanten, die festlegen, wie stark die schwache Wechselwirkung für das Proton ist. Das Proton ist einer der fundamentalen Bausteine der Materie, die uns umgibt. Selbst besteht es aber aus weiteren Unterteilchen, den Quarks und Gluonen. Daraus ergibt sich ein komplexes Verhalten des Protons, das mit derzeitigen Computern nicht exakt zu berechnen ist. Es gibt aber angenäherte – effektive – Rechenverfahren, deren Berechnungen sehr gut mit den Ergebnissen des Experiments übereinstimmen.

    Myon testet schwache Kraft des Protons

    In ihrem Experiment haben die Forschenden untersucht, mit welcher Wahrscheinlichkeit ein Proton ein Myon einfängt – eine Reaktion, für die die schwache Wechselwirkung verantwortlich ist. Das Myon ist dem Elektron sehr ähnlich, aber etwa 200-mal schwerer und instabil – es zerfällt in rund 2 Millionstelsekunden in andere Teilchen. Genau so wie das Elektron in einem normalen Wasserstoffatom kann auch das Myon an das Proton gebunden werden. Da es aber deutlich schwerer ist, ist es viel näher am Proton, und so kann es leichter zu einer Einfangreaktion kommen. Das Proton wandelt sich dabei in ein Neutron um und das Myon in ein Neutrino.

    Den Weg der Myonen in 3-D beobachten – Messkammer am PSI entwickelt

    „Das Herzstück des Experimentes war eine „Zeitprojektionskammer“, die in einem Behälter mit extrem reinem Wasserstoffgas eingebettet war. Mit dieser Kammer konnte die Spur jedes Myons dreidimensional bis zum Stopp aufgezeichnet werden – eine notwendige Grundbedingung für die hohe Präzision des Experiments. Die Kammer ist in einer Zusammenarbeit der Detektorengruppe und der technischen Dienste des PSI neu entwickelt worden“, erklärt Malte Hildebrand, Forscher am PSI und Leiter der Detektorengruppe.

    Wie sieht man, dass ein Proton ein Myon eingefangen hat?

    „In die Zeitprojektionskammer wurde jeweils ein einzelnes Myon hineingebracht“, sagt Bernhard Lauss, Experimentalphysiker am PSI. „Es verdrängte das Elektron aus einem der Wasserstoffatome und bewegte sich an dessen Stelle um das Proton – den Kern des Wasserstoffatoms.“ Nun kann das Myon zerfallen und ein Elektron aussenden, das von Detektoren registriert wird. Das ans Proton gebundene Myon kann aber auch vom Proton eingefangen werden und so auf noch einem weiteren Weg verschwinden. Wegen dieser zusätzlichen Möglichkeit “lebt“ ein Myon in der Nähe eines Protons im Mittel kürzer als ein freies Myon. Diese Lebensdauer bestimmt man, indem man die beim Zerfall entstehenden Elektronen beobachtet. Aus dem Vergleich dieser Lebensdauer mit derjenigen des freien Myons, die aus Messungen am PSI sehr genau bekannt ist, kann man die entsprechende Kopplungskonstante berechnen.

    Experiment nur am PSI in einem Menschenleben möglich

    „Ein solches Experiment kann zurzeit nur am PSI durchgeführt werden“, betont Peter Kammel, einer der zwei Sprecher des Experiments, der an der Universität von Washington in Seattle (USA) forscht. „Denn nur an der Beschleunigeranlage des PSI werden genug Myonen erzeugt, damit das Experiment in einer realistischen Zeit durchgeführt werden kann.“ Für das Projekt wurde eine neue Methode entwickelt, mit der die entstandenen Myonen und andere Teilchen direkt im Wasserstofftank sichtbar gemacht werden konnten. So konnte man den Myonenstrahl direkt nach Ankunft eines Myons blockieren, sodass sich stets nur ein einzelnes Myon im Experiment befand. Zugleich konnte sofort ein neues Teilchen nachgeliefert werden, sobald das vorherige zerfallen war. Dadurch ging keine Zeit zwischen den aufeinanderfolgenden Myonen verloren. Dennoch dauerte das Experiment mehrere Jahre.

    Viele Teilchen statt hohe Energie

    Das Experiment ist ein Beispiel für Forschung in der Teilchenphysik, bei der es darauf ankommt, viele Teilchen – hier Myonen – zur Verfügung zu haben, damit man eine Grösse besonders genau messen kann. Diese Arbeiten sind komplementär zu Experimenten an den grossen Beschleunigeranlagen, an denen man Teilchenstrahlen hoher Energie nutzt, mit denen man tief in das Innere anderer Teilchen schauen oder neue Teilchen mit hohen Massen erzeugen kann. In der Schweiz hat man mit dem PSI und dem CERN die weltbesten Anlagen für beide Arten von Experimenten.

    „Psychologische“ Fehlerquelle ausgeschlossen

    Lange bevor das Experiment durchgeführt war, hatten theoretische Physiker den Wert der Kopplungskonstante berechnet. So sahen die Experimentatoren die Gefahr, dass sie sich bei der Auswertung ihrer Messergebnisse unbewusst vom berechneten Wert beeinflussen lassen könnten. Um das zu verhindern, hatten sie die Ergebnisse um einen geheimen Faktor verändert. So konnten sie beim Auswerten nicht erkennen, wie nahe ihre Ergebnisse am vorausgesagten Wert waren. „Erst bei einem sehr spannenden Unblinding meeting – einem „Offenlegungstreffen“ – nach Abschluss der Auswertung wurde der geheime Wert offengelegt, sodass man das tatsächliche Ergebnis berechnen konnte“, erklärt Claude Petitjean, der zweite Sprecher des Experiments.

    An dem Projekt waren beteiligt:
    - USA: Universitäten von Washington-Seattle, Kentucky-Lexington, Illinois-Urbana-Champaign, Kalifornien-Berkeley, Regis-Denver, und Boston
    - Russland: Petersburg Nuclear Physics Institute
    - Belgien: Universität Louvain
    - Schweiz: Paul Scherrer Institut PSI

    Text: Paul Piwnicki

    --------------------------------------------------

    Über das PSI:
    Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

    --------------------------------------------------

    Originalveröffentlichung:
    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P
    V. A. Andreev et al. (MuCap Collaboration)
    Phys. Rev. Lett. 110, 012504 (2013) DOI: 10.1103/PhysRevLett.110.012504 http://dx.doi.org/10.1103/PhysRevLett.110.012504

    Kontakt:
    Dr. Claude Petitjean, Labor für Teilchenphysik,
    Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
    Telefon: +41 56 310 3260; E-Mail: claude.petitjean@psi.ch [Deutsch, Englisch]

    Dr. Malte Hildebrandt, Labor für Teilchenphysik,
    Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
    Telefon: +41 56 310 2145, E-Mail: malte.hildebrandt@psi.ch [Deutsch, Englisch]

    Dr. Bernhard Lauss, Labor für Teilchenphysik,
    Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
    Telefon: +41 56 310 46 47, E-Mail: bernhard.lauss@psi.ch [Deutsch, Englisch]

    Prof. Dr. Peter Kammel
    University of Washington, Department of Physics
    Center for Experimental Nuclear Physics and Astrophysics
    Box 351560; Seattle, WA 98195-1560, USA
    Telefon: +1 206 685-2401; E-Mail: pkammel@uw.edu [Deutsch, Englisch]


    Weitere Informationen:

    http://www.psi.ch/ltp/laboratory-for-particle-physics Labor für Teilchenphysik am Paul Scherrer Institut
    http://www.npl.washington.edu/muon Precision Muon Physics Group at the University of Washington
    http://www.psi.ch/media/wie-stark-ist-die-schwache-kraft Medienmitteilung zur Bestimmung der Lebensdauer des freien Myons
    http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.012504 Zusammenfassung auf der Webseite des American Institute of Physics


    Bilder

    Experiment zum Myoneinfang: Der PSI-Forscher Malte Hildebrandt arbeitet am Detektor, mit dem der Myonenenfang am Proton gemessen wird. (Foto: Paul Scherrer Institut/Markus Fischer)
    Experiment zum Myoneinfang: Der PSI-Forscher Malte Hildebrandt arbeitet am Detektor, mit dem der Myo ...
    Foto: Paul Scherrer Institut/Markus Fischer
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Experiment zum Myoneinfang: Der PSI-Forscher Malte Hildebrandt arbeitet am Detektor, mit dem der Myonenenfang am Proton gemessen wird. (Foto: Paul Scherrer Institut/Markus Fischer)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).