idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.06.2013 08:27

Wenn Grünalgen die Luft ausgeht: Hämoglobin sichert Überleben in sauerstofffreier Umgebung

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Wenn Grünalgen „keine Luft“ bekommen, werden sie überschüssige Energie durch die Produktion von Wasserstoff los. Biologen der Ruhr-Universität Bochum haben herausgefunden, wie die Einzeller bemerken, dass kein Sauerstoff verfügbar ist. Dafür brauchen sie den Botenstoff Stickstoffmonoxid und das Protein Hämoglobin, das bei Menschen in roten Blutkörperchen vorkommt. Mit Kollegen der UC Los Angeles berichtet das Bochumer Team in der Zeitschrift „PNAS“.

    Wenn Grünalgen die Luft ausgeht
    Einzeller brauchen Hämoglobin zum Überleben in sauerstofffreier Umgebung
    PNAS: Rolle des Proteins und von Stickstoffmonoxid entdeckt

    Wenn Grünalgen „keine Luft“ bekommen, werden sie überschüssige Energie durch die Produktion von Wasserstoff los. Biologen der Ruhr-Universität Bochum haben herausgefunden, wie die Einzeller bemerken, dass kein Sauerstoff verfügbar ist. Dafür brauchen sie den Botenstoff Stickstoffmonoxid und das Protein Hämoglobin, das bei Menschen in roten Blutkörperchen vorkommt. Mit Kollegen der UC Los Angeles berichtet das Bochumer Team in der Zeitschrift „PNAS“.

    Hämoglobin – ein altes Protein im neuen Look

    Im menschlichen Körper transportiert Hämoglobin Sauerstoff von der Lunge zu den Organen und sammelt dort entstehendes Kohlendioxid ein, um es zurück zur Lunge zu befördern. „Man weiß aber schon seit Jahren, dass es nicht das eine Hämoglobin gibt“, sagt Prof. Dr. Thomas Happe aus der AG Photobiotechnologie. Die Natur hat eine große Anzahl verwandter Proteine hervorgebracht, die unterschiedliche Funktionen erfüllen. Die Grünalge Chlamydomonas reinhardtii besitzt ein sogenanntes „verkürztes“ Hämoglobin, dessen Funktion bislang unbekannt war. Happes Team entschlüsselte seine Rolle für das Überleben in sauerstofffreier Umgebung.

    In sauerstofffreier Umgebung schaltet die Grünalge spezielle Gene an

    Wenn Chlamydomonas keinen Sauerstoff zur Verfügung hat, überträgt die Alge überschüssige Elektronen auf Protonen; es entsteht Wasserstoff (H2). „Damit das funktioniert, wirft die Grünalge ein bestimmtes Genprogramm an und bildet viele neue Proteine“, erklärt Happe. „Aber wie genau die Zellen überhaupt merken, dass der Sauerstoff fehlt, wussten wir noch nicht.“ Das Forscherteam suchte nach Genen, die besonders aktiv sind, wenn Grünalgen ohne Sauerstoff zurechtkommen müssen – und fand ein Gen, das den Bauplan für ein Hämoglobin enthält. In sauerstoffreicher Umgebung war dieses Gen hingegen komplett stillgelegt.

    Ein Hämoglobin und Stickstoffmonoxid helfen Grünalgen beim Überleben

    Das Hämoglobin-Protein und seine genetische Blaupause untersuchten die Wissenschaftler mit molekularbiologischen und biochemischen Analysen genauer. „Eins wurde sehr schnell klar“, sagt Dr. Anja Hemschemeier aus der AG Photobiotechnologie. „Wenn wir das Gen abschalten, können die Algen ohne Sauerstoff nur noch sehr schlecht wachsen.“ Aus früheren Studien ist bekannt, dass Hämoglobin in vielen Lebewesen Stickstoffmonoxid abfängt; denn eine Überdosis dieses Gases vergiftet die Zellen. Die Biologen testeten daher, ob Grünalgen, die nach genetischer Manipulation kein Hämoglobin mehr bilden können, an einer Stickstoffmonoxid-Vergiftung sterben. Ihre Erwartung: Den Grünalgen sollte es besser gehen, wenn sie das Gas auf anderem Wege abfangen. „Überraschenderweise konnten die Algen dann gar nicht mehr wachsen“, sagt Hemschemeier. Die Forscher folgerten, dass Hämoglobin und Stickstoffmonoxid unter sauerstofffreien Bedingungen gemeinsame Sache machen.

    Stickstoffmonoxid signalisiert: „Kein Sauerstoff!“

    Stickstoffmonoxid fungiert in vielen Lebewesen als Botenstoff – so scheinbar auch in Grünalgen. Bei Versuchen im Reagenzglas zeigte sich, dass das Grünalgen-Hämoglobin mit Stickstoffmonoxid interagiert. Führten die Forscher den Einzellern das Gas künstlich zu, wurden bestimmte Gene aktiv, die sonst nur in Abwesenheit von Sauerstoff „anspringen“. „Aus all dem können wir schließen, dass Chlamydomonas Stickstoffmonoxid nutzt, um innerhalb der Zelle das Signal ‚Kein Sauerstoff!‘ weiterzuleiten, und dass unser Hämoglobin an diesem Prozess beteiligt ist“, resümiert Happe. Die Rolle dieses Proteins in Grünalgen will sein Team weiter ergründen. Denn die Biologen entdeckten noch elf weitere Hämoglobin-Gene in dem Organismus. „Jetzt geht es erst richtig los“, meint der Bochumer. „Die Karte der Hämoglobin-Forschung hat noch viele weiße Flecken, die wir mit Inhalt füllen wollen. Dass ein Einzeller zwölf Hämoglobin-Proteine benötigt, spricht für fein abgestimmte Funktionen in der Zelle.“

    Titelaufnahme

    A. Hemschemeier, M. Düner, D. Casero, S.S. Merchant, M. Winkler, T. Happe (2013): Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1302592110

    Weitere Informationen

    Prof. Dr. Thomas Happe, AG Photobiotechnologie, Lehrstuhl Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: thomas.happe@rub.de

    Dr. Anja Hemschemeier, AG Photobiotechnologie, Lehrstuhl Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24282, E-Mail: anja.hemschemeier@rub.de

    Redaktion: Dr. Julia Weiler


    Bilder

    In sauerstoffreicher Umgebung (+ O2) gedeiht Chlamydomonas reinhardtii mit und ohne Hämoglobin – auch wenn die Zelle kein Stickstoffmonoxid (NO) zur Verfügung hat. Herrscht jedoch Sauerstoffmangel (-O2), wächst der Einzeller nur, wenn er Hämoglobin besitzt. Ohne Hämoglobin und ohne Stickstoffmonoxid (-NO) ist so gut wie gar kein Wachstum mehr möglich.
    In sauerstoffreicher Umgebung (+ O2) gedeiht Chlamydomonas reinhardtii mit und ohne Hämoglobin – auc ...
    Bild: AG Photobiotechnologie, RUB
    None

    Ein Rasen aus Chlamydomonas-Zellen – ausgestrichen in Form einer Einzelzelle – auf einer Agarplatte, auf denen die Algen entweder für die Langzeitaufbewahrung oder für bestimmte Experimente kultiviert werden.
    Ein Rasen aus Chlamydomonas-Zellen – ausgestrichen in Form einer Einzelzelle – auf einer Agarplatte, ...
    Bild: AG Photobiotechnologie, RUB
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    In sauerstoffreicher Umgebung (+ O2) gedeiht Chlamydomonas reinhardtii mit und ohne Hämoglobin – auch wenn die Zelle kein Stickstoffmonoxid (NO) zur Verfügung hat. Herrscht jedoch Sauerstoffmangel (-O2), wächst der Einzeller nur, wenn er Hämoglobin besitzt. Ohne Hämoglobin und ohne Stickstoffmonoxid (-NO) ist so gut wie gar kein Wachstum mehr möglich.


    Zum Download

    x

    Ein Rasen aus Chlamydomonas-Zellen – ausgestrichen in Form einer Einzelzelle – auf einer Agarplatte, auf denen die Algen entweder für die Langzeitaufbewahrung oder für bestimmte Experimente kultiviert werden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).