„Schmerz lass nach!“ Um dieses Signal zu senden, produziert der menschliche Körper kleine Botenstoffmoleküle, die an bestimmte Rezeptoren andocken. Dieses Zusammenspiel zwischen den Botenstoffen, Enkephaline genannt, und Opioidrezeptoren ist mit herkömmlichen biochemischen Methoden schwer zu untersuchen. Einem interdisziplinären Team von Biochemikern und Anorganischen Chemikern der Ruhr-Universität Bochum (RUB) gelang es nun, die Struktur eines Enkephalins in Lösung zu bestimmen und erstmals seine Interaktion mit dem Opioidrezeptor im Detail zu verfolgen. Die Analyse liefert präzise neue Ansatzpunkte für die Entwicklung von Medikamenten, die gezielt bestimmte Arten von Schmerz bekämpfen.
„Schmerz lass nach!“
RUB-Forscher entschlüsseln Zusammenspiel von Enkephalinen und Schmerzrezeptoren
Metallkomplex macht flüchtigen Botenstoff dingfest
„Schmerz lass nach!“ Um dieses Signal zu senden, produziert der menschliche Körper kleine Botenstoffmoleküle, die an bestimmte Rezeptoren andocken. Dieses Zusammenspiel zwischen den Botenstoffen, Enkephaline genannt, und Opioidrezeptoren ist mit herkömmlichen biochemischen Methoden schwer zu untersuchen. Einem interdisziplinären Team von Biochemikern und Anorganischen Chemikern der Ruhr-Universität Bochum (RUB) gelang es nun, die Struktur eines Enkephalins in Lösung zu bestimmen und erstmals seine Interaktion mit dem Opioidrezeptor im Detail zu verfolgen. Die Analyse liefert präzise neue Ansatzpunkte für die Entwicklung von Medikamenten, die gezielt bestimmte Arten von Schmerz bekämpfen. Die Zeitschrift „Dalton Transactions“ widmet dem Thema die Titelgeschichte.
Rhodium erlaubt Analyse von Enkephalinen in Lösung
Enkephalin ist ein Peptid; es besteht aus Aminosäuren. In Lösung ist es sehr flexibel, sodass Forscher das kleine Molekül nur schwer für Strukturanalysen „zu fassen“ bekommen. Die RUB-Chemiker nutzten einen Trick: In das Enkephalin brachten sie einen Komplex ein, der das Edelmetall Rhodium enthielt und in der Natur nicht vorkommt. Die Struktur des Metall-Peptid-Komplexes untersuchten sie dann mit kernmagnetischer Resonananzspektroskopie, kurz NMR (nuclear magnetic resonance). Mit gebundenem Rhodium ließ sich das Enkephalin wesentlich umfassender beobachten als zuvor. In Computersimulationen berechneten die Forscher dann, wie sich die mit NMR bestimmte Struktur des Enkephalins optimal in die bekannte dreidimensionale Struktur des Rezeptors einpassen lässt.
Rund 40 Jahre nach der Entdeckung
Die Enkephaline wurden als erste Neuropeptide überhaupt bereits in den 70er-Jahren entdeckt und intensiv erforscht. Die zugehörigen Opioidrezeptoren, die zur Klasse der sogenannten G-Protein-gekoppelten Rezeptoren gehören, entzogen sich jedoch jahrzehntelang der Strukturanalyse. Erst im vergangenen Jahr wurden einige ihrer Strukturen aufgeklärt, und der Chemie-Nobelpreis 2012 für die Erforschung der G-Protein-gekoppelten Rezeptoren brachte neuen Schwung in das Arbeitsgebiet. „Jetzt plötzlich – etwa 40 Jahre nach der Entdeckung der Enkephaline – können wir auf atomarer Ebene verstehen, wie diese Botenstoffe an ihre Rezeptoren binden“, sagt Prof. Dr. Nils Metzler-Nolte, der die RUB-Arbeitsgruppe Medizinische Anorganische Chemie leitet. „Unsere Arbeit zeigt, wie der gezielte Einsatz von in der Natur nicht vorkommenden Metallkomplexen durchaus einen Beitrag liefern kann, seit langem offene Fragen in der Medizin zu klären“, ergänzt Prof. Dr. Raphael Stoll von der AG Biomolekulare Spektroskopie.
Förderung und Vorarbeiten
Die Deutsche Forschungsgemeinschaft (FOR 630 und SFB 642) und die RUB Research School unterstützten die vorliegenden Arbeiten. Sie bauen auf der früheren Zusammenarbeit der Arbeitsgruppen um Nils-Metzler Nolte und Raphael Stoll mit Prof. Dr. Richard H. Fish vom Lawrence Berkeley National Laboratory in Kalifornien auf. Im vergangenen Jahr zeigte das Team erstmals, wie Metallkomplexe bei Strukturuntersuchungen helfen können.
Titelaufnahme
F. Wieberneit, A. Korste, B. Albada, N. Metzler-Nolte, R. Stoll (2013): Structural and biological implications of the binding of Leu-enkephalin and its metal derivatives to opioid receptors, Dalton Transactions, DOI: 10.1039/C3DT50635E
Weitere Informationen
Prof. Dr. Nils Metzler-Nolte, Anorganische Chemie I, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24153, E-Mail: nils.metzler-nolte@rub.de
Prof. Dr. Raphael Stoll, AG Biomolekulare Spektroskopie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Germany, Tel. 0234/32-25466, E-Mail: raphael.stoll@rub.de
Angeklickt
Frühere Presseinformation zu Metall-Peptid-Komplexen
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00237.html.de
Cover-Bild
http://pubs.rsc.org/en/content/articlepdf/2013/dt/c3dt90091f?page=search
Redaktion: Dr. Julia Weiler
Der Enkephalin-Rezeptor (grau) durchspannt die Zellmembran. In Grün ist die Struktur des freien Enke ...
Grafik: Florian Wieberneit (AG Biomolekulare NMR)
None
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Der Enkephalin-Rezeptor (grau) durchspannt die Zellmembran. In Grün ist die Struktur des freien Enke ...
Grafik: Florian Wieberneit (AG Biomolekulare NMR)
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).