idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.08.2013 14:08

Fünfmal weniger Platin: Aerogel-Katalysator kann Brennstoffzellen wirtschaftlich attraktiver machen

Dagmar Baroke Abteilung Kommunikation
Paul Scherrer Institut (PSI)

    Wasserstoff-Brennstoffzellen haben das Potenzial, die individuelle Mobilität in eine umweltfreundliche Zukunft zu führen. Das Paul Scherrer Institut PSI erforscht und entwickelt seit mehr als 10 Jahren solche Brennstoffzellen. Erste Praxistests haben deren erfolgreichen Einsatz in Autos und Bussen demonstriert. Weitere Forschung bleibt jedoch nötig, um ihre Langlebigkeit und Wirtschaftlichkeit zu verbessern. Ein internationales Forscherteam mit PSI-Beteiligung hat nun ein neues Nanomaterial hergestellt und charakterisiert, das Leistungsfähigkeit und Haltbarkeit dieser Brennstoffzellen um ein Vielfaches erhöhen könnte - bei gleichzeitiger Senkung der Materialkosten.

    In einer Wasserstoff-Brennstoffzelle wird Wasserstoff durch elektrochemische Reaktionen zu Strom und Wasser umgewandelt. Ein wichtiger Schritt in diesen Reaktionen ist die Sauerstoff-Reduktion an der positiven Elektrode der Zelle. In die Zelle eingespeiste Sauerstoffmoleküle werden dabei zu Wasser umgewandelt. Diese Reaktion geht unter normalen Bedingungen nur sehr langsam vor sich, weshalb Katalysatoren notwendig sind, um die Umwandlung zu beschleunigen. In konventionellen Zellen erfüllen Edelmetalle wie Platin diese katalytische Funktion. Die dabei verwendeten Platin-Nanopartikel werden von einem Substrat aus typischerweise hochoberflächigem Kohlenstoff getragen, das dem Katalysator mechanischen Halt bietet. Aber das Kohlenstoff-Substrat kann unter dem üblichen Start-Stopp-Betrieb im Stadtverkehr oder bei Leerlauf leicht korrodieren und dadurch die Funktion des Katalysators beeinträchtigen. Das wiederum verkürzt die Lebensdauer der gesamten Brennstoffzelle. Seit Langem suchen Forscher deshalb nach Katalysatoren für die Sauerstoff-Reduktion, die ohne Träger (Substrat) auskommen und dabei eine hohe spezifische Oberfläche mit vielen aktiven Zentren sowie eine gute Langzeitstabilität aufweisen.

    Ein international zusammengesetztes Forscherteam mit Beteiligung des PSI hat nun einen grossen Fortschritt erzielt. Mit einem dreidimensionalen Aerogel aus einer Platin-Palladium-Legierung konnten die Forschenden die katalytische Aktivität für die Sauerstoff-Reduktion an der positiven Elektrode einer Wasserstoff-Brennstoffzelle – im Vergleich zu marktüblichen Katalysatoren aus Platin auf Kohlenstoffträger – um das Fünffache erhöhen. Das bedeutet, dass nun mit nur einem Fünftel der Edelmetallmenge die gleiche Sauerstoffmenge umgesetzt werden kann. Könnte man diese Reduktion der erforderlichen Platinbeladung auf industrielle Skala übertragen, hätte das eine erhebliche Senkung der Herstellungskosten für diese Brennstoffzellen zur Folge. Das Aerogel, eine Art nanostrukturierter Schaumstoff, hat zudem Langzeittests im Labor bestanden, bei denen die typischen Betriebsbedingungen in einem Fahrzeug simuliert wurden.

    Luftiges Geflecht aus Nanodrähten

    Das nun von Forschern der Technischen Universität Dresden und des PSI synthetisierte und charakterisierte Aerogel bildet ein dreidimensionales Netzwerk aus Nanodrähten und zeichnet sich durch eine sehr hohe Porosität und innere Oberfläche aus. Letztere Eigenschaften erleichtern das Andocken vieler Sauerstoffmoleküle an die katalytisch aktiven Platinatome – eine Voraussetzung für die effiziente Umwandlung des Sauerstoffs.

    Hohe Porosität und grosse Oberflächen treten auch bei den Katalysatoren auf, die bereits heute in Brennstoffzellen verwendet werden, jedoch nur, wenn Platinpartikel auf Kohlenstoff geträgert sind. Der entscheidende Vorteil des neuen Aerogels liegt darin, dass es diese Vorzüge mit einer ausgedehnten, dreidimensionalen Struktur kombiniert, was einen Träger komplett überflüssig macht.

    Bimetall-Aerogel zum ersten Mal synthetisiert

    Wegen ihrer hervorragenden Eigenschaften für viele Anwendungen in Elektrochemie und Sensorik haben Aerogele in den letzten Jahren grosse Aufmerksamkeit auf sich gezogen. Zahlreiche Forschergruppen versuchen sich weltweit an der Herstellung neuer Aerogele, meist in der Gewissheit, dass nützliche Anwendungen folgen werden. Doch bisher blieb ihr Erfolg auf eine kleine Gruppe von chemischen Substanzen beschränkt: Die meisten Aerogele bestehen aus Oxiden oder aus einzelnen Metallen. Theoretische Überlegungen hatten jedoch nahegelegt, dass Katalysatoren aus bestimmten Metalllegierungen verbesserte katalytische Aktivität und Stabilität besitzen würden, und es wurde versucht, diese Eigenschaften in einen Aerogel-Katalysator zu implementieren. Die Synthese eines solchen Bimetall-Aerogels hatte sich bisher aber als harte Knacknuss erwiesen. „Es ist das erste Mal überhaupt, dass ein Aerogel aus einer Metalllegierung synthetisiert werden konnte“, sagt Thomas Justus Schmidt, Leiter des Labors für Elektrochemie am PSI und Mitautor der Studie.

    Die neue Arbeit bestätigt die Hoffnungen, die man in diese Materialien gesetzt hatte. So liegt zum Beispiel der Schlüssel für die verbesserte Aktivität des neuen Aerogels darin, dass die Bindungsstärke zwischen den Platinatomen und den Sauerstoff enthaltenden Verbindungen durch die Legierung mit Palladium optimiert wird. Das heisst: die Bindung ist so stark, dass die Sauerstoffmoleküle gerade lange genug für die Umwandlung zu Wasser gebunden bleiben, aber gleichzeitig auch schwach genug, dass es kaum zur Bildung von Oxiden auf der Oberfläche des Katalysators kommt. Dadurch, dass vorzugsweise die Reaktion zu Wasser abläuft, statt die Bildung von Oxiden, wird zu jedem Zeitpunkt die Anzahl der aktiven Zentren optimiert, sodass Sauerstoffmoleküle andocken und in hohen Raten umgesetzt werden können.

    Weitere Fragen offen

    Noch nicht verstanden haben die Forscher einen weiteren Vorteil der Legierung, nämlich die höhere Stabilität des Bimetall-Aerogels im Vergleich zu Monometall-Aerogelen aus reinem Platin. „Offensichtlich spielt auch hier die Präsenz von Palladium im Aerogel eine wichtige Rolle, wir wissen aber noch nicht genau, wie sich dies auf die Stabilität des Katalysators auswirkt“, erklärt Schmidt. Dieser und weiteren Fragen in Bezug auf das neue Nanomaterial wollen sich die Wissenschaftler in einem Folgeprojekt über die nächsten drei Jahre widmen. „Wir haben soeben einen Finanzierungsantrag gemeinsam mit der TU Dresden ausgearbeitet, um das bisher intern finanzierte Projekt auf eine breitere finanzielle Basis zu stellen“, so Schmidt.

    Text: Leonid Leiva

    Kontakt / Ansprechpartner
    Prof. Dr. Thomas Justus Schmidt, Leiter des Labors für Elektrochemie, Paul Scherrer Institut, Telefon: +41 56 310 57 65, E-Mail: thomasjustus.schmidt@psi.ch

    Dr. Rüdiger Kötz, Leiter der Gruppe Elektrokatalyse und Grenzschichten, Paul Scherrer Institut, Telefon: +41 56 310 20 57, E-Mail: ruediger.koetz@psi.ch

    Prof. Dr. Alexander Eychmüller, Physikalische Chemie, Technische Universität Dresden
    Telefon: +49 351 463-3984, E-Mail: alexander.eychmueller@chemie.tu-dresden.de

    Originalveröffentlichung

    Bimetall-Aerogele: hoch effiziente Elektrokatalysatoren für die Sauerstoffreduktion
    Wei Liu, Paramaconi Rodriguez, Lars Borchardt, Annette Foelske, Jipei Yuan, Anne-Kristin Herrmann, Dorin Geiger, Zhikun Zheng, Stefan Kaskel, Nikolai Gaponik, Rüdiger Kötz, Thomas J. Schmidt und Alexander Eychmüller
    Angewandte Chemie 2013, 125, 1 – 6
    DOI: 10.1002/ange.201303109 http://dx.doi.org/10.1002/ange.201303109


    Bilder

    Elektronenmikroskopische Aufnahme des Platin-Palladium-Aerogels (bei einem Verhältnis von 50 Prozent Platin und 50 Prozent Palladium)
    Elektronenmikroskopische Aufnahme des Platin-Palladium-Aerogels (bei einem Verhältnis von 50 Prozent ...
    Bild: Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
    None

    Schematische Darstellung der Reduktion von Sauerstoff an der positiven Elektrode einer Niedertemperatur-Polymerelektrolyt-Brennstoffzelle. Jedes Sauerstoffatom der in die Zelle eingespeisten Sauerstoffmoleküle fängt zwei Elektronen ab. Anschliessend entsteht Wasser aus der Reaktion mit Wasserstoffkernen.
    Schematische Darstellung der Reduktion von Sauerstoff an der positiven Elektrode einer Niedertempera ...
    Bild: Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Chemie, Energie, Verkehr / Transport
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Elektronenmikroskopische Aufnahme des Platin-Palladium-Aerogels (bei einem Verhältnis von 50 Prozent Platin und 50 Prozent Palladium)


    Zum Download

    x

    Schematische Darstellung der Reduktion von Sauerstoff an der positiven Elektrode einer Niedertemperatur-Polymerelektrolyt-Brennstoffzelle. Jedes Sauerstoffatom der in die Zelle eingespeisten Sauerstoffmoleküle fängt zwei Elektronen ab. Anschliessend entsteht Wasser aus der Reaktion mit Wasserstoffkernen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).