Wenn sich die Gefäße um die Lungenbläschen dauerhaft verengen, kommt es zu gefährlichem Lungenhochdruck. Wissenschaftler der Universität Bonn haben jetzt einen Signalweg entschlüsselt, der die Gefäßverengung in der Lunge unter Sauerstoffmangel verursacht. Der entdeckte Mechanismus bietet einen potenziellen Ansatzpunkt für neue Medikamente. Die Ergebnisse werden nun in den “Proceedings of the National Academy of Sciences” (PNAS) vorgestellt.
Die Lunge ist ein sehr effizientes Organ: Nur dort, wo die Belüftung der Lungenbläschen gut ist, fließt das Blut hin, und dort findet auch vermehrt der Sauerstoffübertritt ins Blut statt. Wenn ein Lungenbläschen dagegen nicht so gut belüftet ist, verengen sich die benachbarten Gefäße und drosseln den Blutzufluss. „Das funktioniert ganz nach dem Prinzip »Nur dort Energie investieren, wo es sich lohnt«“, sagt Dr. Daniela Wenzel vom Institut für Physiologie I der Universität Bonn. Dass es durch mangelnde Ventilation in einem Teil der Lunge zu einem lokalen Sauerstoffmangel kommt und sich daraufhin die Blutgefäße verengen, ist schon seit Langem bekannt. „Unklar ist, welche Mechanismen dabei eine Rolle spielen“, berichtet Dr. Michaela Matthey, eine der Erstautorinnen der Studie.
Einen neuen Signalweg, der vom Sauerstoffmangel zur Gefäßverengung in der Lunge führt, haben nun Wissenschaftler des Instituts für Physiologie I und des Instituts für Molekulare Psychiatrie des Life & Brain Zentrums der Universität Bonn zusammen mit dem Institut für Physiologische Chemie des Universitätsklinikums Mainz entschlüsselt. Sinkt der Sauerstoffgehalt in den Gefäßen, die das Lungenbläschen umgeben, bildet sich vermehrt Arachidonylethanolamid (AEA), ein vom Körper produziertes Cannabinoid. Es wird daraufhin durch das Enzym FAAH zu Lipidmediatoren verstoffwechselt, die direkt für die Gefäßverengung verantwortlich sind.
Forscher blockieren schrittweise die Schalter des Signalwegs
Den Signalweg entdeckten die Wissenschaftler, indem sie in so genannten Knockout-Mäusen das Gen für das Enzym FAAH stumm schalteten und damit die Signalkette unterbrachen. Trotz des Sauerstoffmangels stieg der Druck in den Lungengefäßen kaum an. „Das Enzym FAAH musste also eine Schlüsselrolle spielen“, berichtet Dr. Wenzel. Nach diesem Muster blockierten die Forscher nacheinander die einzelnen Schalter des vermuteten Signalwegs. Jedes Mal blieb ein deutlicher Druckanstieg in den Lungengefäßen der Mäuse aus. „Das zeigte uns, dass wir die wichtigen Bestandteile der Signalkette erfasst haben“, sagt die Wissenschaftlerin der Universität Bonn.
Potenzielle Ansatzpunkte für Medikamente gegen Lungenhochdruck
Das Forscherteam konnte darüber hinaus unter anderem mit massenspektrometrischen Messungen an menschlichen Zellen aufklären, dass die glatten Muskelzellen der Lungengefäße für die Gefäßverengung verantwortlich sind. „Bei einem Sauerstoffmangel wird in genau diesen Zellen mehr AEA produziert, das die Ausgangssubstanz der Signalkette ist“, sagt Dr. Matthey. Die Resultate aus der Grundlagenforschung bieten interessante potenzielle Ansatzpunkte zur Behandlung von Lungenhochdruck, unter dem zum Beispiel starke Raucher leiden können.
Bei dieser Krankheit verengen sich dauerhaft die Lungengefäße, die Gefäßmuskulatur verdickt sich und wird mit Bindegewebe durchsetzt. Dadurch steigt unumkehrbar der Druck in den Lungengefäßen. Die rechte Herzkammer muss gegen den Lungenhochdruck immer stärker arbeiten und erschöpft allmählich. Ohne Therapie beträgt die durchschnittliche Lebenserwartung nur wenige Jahre. „Der Lungenhochdruck lässt sich bislang nicht heilen, sondern nur abmildern“, sagt Dr. Wenzel. Die Forscher haben bereits im Mausmodell gezeigt, dass ein Hemmstoff, der das Enzym FAAH als Schlüsselmolekül in der Signalkette blockiert, die Ausbildung von Lungenhochdruck verhindern kann. „Allerdings besteht noch weiterer Forschungsbedarf, ob dieser Wirkstoff auch für den Menschen in Frage kommt“, sagt Prof. Dr. Bernd Fleischmann vom Institut für Physiologie.
Die Studie wurde durch die DFG im Rahmen der Forschergruppe 926 „Physiology and Pathophysiology of the endocannabinoid system“ gefördert.
Publikation: Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction, Proceedings of the National Academy of Sciences (PNAS), DOI: 10.1073/pnas.1308130110.
Kontakt:
Dr. med. Daniela Wenzel
Institut für Physiologie I
Universität Bonn
Life & Brain Center
Tel.: 0228/6885-216
E-Mail: dwenzel@uni-bonn.de
Den Mechanismen des Lungenhochdrucks auf der Spur: Prof. Dr. Bernd Fleischmann, Dr. Michaela Matthey ...
Foto: Rolf Müller/UKB
None
Links: Arterie mit dünner Gefäßwand (Pfeil) in einer Mauslunge, die normaler Raumluft ausgesetzt war ...
Foto: Dr. Michaela Matthey/Uni Bonn
None
Merkmale dieser Pressemitteilung:
Journalisten
Medizin
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).