Achtung Sperrfrist bis 20.12.13; 9:00h MEZ
Jena: Forscher des Leibniz-Instituts für Altersforschung – Fritz-Lipmann-Institut e.V. (FLI) in Jena haben einen Mechanismus in der Zelle aufgeklärt, der das unkontrollierte Wachstum von Krebszellen erklärt. Die Ergebnisse werden heute in der Fachzeitschrift Nature communications online veröffentlicht.
„Möglicherweise haben wir damit einen Ansatzpunkt gefunden, um unkontrolliertes Zellwachstum in Tumorgewebe zu stoppen, ohne dass gesunde Zellen dabei absterben.“, erklärt WooKee Min, Erstautor der Studie. Das entscheidende Eiweißmolekül heißt Chk1 und gehört zu einer Gruppe von Enzymen, die den Zellzyklus und damit auch die Vermehrung der Zellen steuern. Bisher war unklar, wie dieses Enzym aktiviert wird und wo genau in der Zelle und am Erbgut, der DNA, es sich befindet. Diese beiden entscheidenden Fragen wurden nun in Jena beantwortet.
Der Zellzyklus ist entscheidend für das Verständnis der Tumorentstehung
Jede Zelle mit einem Zellkern durchläuft von einer Zellteilung zur nächsten eine Abfolge von physiologischen Ereignissen, den Zellzyklus. Nach einer Zellteilung beginnt in den Tochterzellen zunächst die Interphase, in der die Zelle wächst, Zellbestandteile ergänzt werden und im Zellkern die DNA verdoppelt oder repliziert wird. Der Zeitraum, in dem die DNA synthetisiert wird, wird auch S-Phase für Synthesephase genannt. Sie wird durch genetische Signale und durch die Aktivität von Zellzyklusproteinen gesteuert. Eines davon ist das am Fritz-Lipmann-Institut untersuchte Chk1. Ist dieses Enzym in zu hoher Konzentration vorhanden, dann wird die Steuerung des Zellzyklus gestört. In der Folge wird das Erbgut während der S-Phase immer und immer wieder verdoppelt. Die Zellen wachsen unkontrolliert. Es sind Krebszellen entstanden.
Bei DNA-Schäden kann die Zelle sich selber helfen
Auf der anderen Seite werden Zellen im Laufe ihres Lebens geschädigt, zum Beispiel durch Umwelteinflüsse wie Strahlung und Gifte aber auch durch natürliche Alterung. Damit sich solche Schäden vor allem im Erbgut nicht anhäufen, stehen der Zelle verschiedene Reparaturmechanismen zur Verfügung. Auch die Reparatur von DNA-Schäden wird von Enzymen der Zelle gesteuert. Eines davon ist die Poly(ADP-ribose), kurz PARP-1. Das Enzym ist zuständig für die Behebung von Schäden durch Röntgenstrahlen oder chemische Substanzen.
„Beide Enzyme, PARP-1 und Chk1, sind schon länger bekannt.“, sagt Zhao-Qi Wang, Forschungsgruppenleiter am FLI. „Wir wussten bisher aber nicht, wie die beiden zusammenwirken, um eine reibungslose Reparatur von Genomschäden und damit auch die fehlerfreie Replikation der DNA zu gewährleisten.“
PARP-1 aktiviert Chk1 direkt am DNA-Strang
Die Forscher um WooKee Min in Jena konnten nun zwei entscheidende Ergebnisse veröffentlichen:
Völlig überraschend stellten sie fest, dass Chk1 nicht frei in der Zelle verfügbar ist, sondern direkt in den Fabriken sitzt, in denen DNA kopiert wird. Diese Bindung muss aber stabilisiert und aktiviert werden. Und an diesem Punkt kommt das Enzym PARP-1 ins Spiel. Es stabilisiert die Verbindung zwischen Genomstrang und Chk1. Gleichzeitig verändert es das Enzym so, dass es Energieträger aufnehmen und aktiv werden kann. Damit ist den Wissenschaftlern ein wichtiger Schritt gelungen. Sie konnten das Zusammenwirken von DNA-Reparaturmechanismen und der Steuerung der Zellteilung während des Zellzyklus aufklären. Außerdem konnten sie diesen Prozess direkt am Genomstrang im Zellkern während der Verdopplung der Erbinformation lokalisieren.
Neue medizinische Möglichkeiten
Die Bindung der entscheidenden Enzyme direkt am DNA-Strang hat nach Ansicht der Forscher wegweisende Bedeutung für die Entwicklung neuer Medikamente in der Krebstherapie. „Wenn wir Chk1 in einer Krebszelle uneingeschränkt aktiv lassen, so kann der Krebs weiterwachsen und weiterwachsen. Schalten wir das Enzym hingegen durch Medikamente komplett aus, so sterben die Zellen und damit das Gewebe ab.“ erklärt Zhao-Qi Wang. „Lösen wir allerdings nur die Bindung zwischen Chk1 und Genom, so ist das Protein zwar noch vorhanden und die Zelle kann weiterleben, aber es kann nicht mehr aktiv werden.“ Das wilde Zellwachstum und damit auch das weitere Fortschreiten der Krebserkrankung sind gestoppt. Die Forscher am Leibniz-Institut für Altersforschung in Jena haben somit über ihre Grundlagenforschung die Tür für die Entwicklung neuer Krebsmedikamente geöffnet.
Die Prinzipien dieses Zellmechanismus sind in allen Zellen gleich. In Jena wurde sowohl mit Mäusezellen, aber auch mit menschlichen und mit Affenzellen gearbeitet. So können die Ergebnisse direkt in die medizinische Forschung einfließen.
Krebserkrankungen sind die zweithäufigste Todesursache in Deutschland
Nach Herz-Kreislauf-Erkrankungen ist Krebs in Deutschland immer noch die zweithäufigste Todesursache. Allerdings steigen die Überlebensraten nach Diagnosestellung kontinuierlich an. Nach Auskunft des Robert-Koch-Instituts lebten von den 2007 und 2008 an Krebs erkrankten Frauen nach fünf Jahren noch 64 %. Bei den Männern waren es 59 %. Nur in den Skandinavischen Ländern sind die Zahlen noch besser. Krebserkrankungen nehmen aber mit steigendem Alter kontinuierlich zu. Krebs wird daher auch als Alterserkrankung des Zellwachstums bezeichnet. Durch eine verbesserte Krebstherapie kann damit die Gesundheitsspanne im Alter erheblich verlängert werden.
Achtung: Sperrfrist bis 20.12.13, 9:00h (MEZ)
Originalpublikation
WOOKEE MIN, CHRISTOPHER BRUHN, PAULIUS GRIGARAVICIUS, ZHONG-WIE ZHOU, FU LI, ANJA KRÜGER, BÉNAZIR SIDDEEK, KALR-OTTO GREULICH, OLIVER POPP, CHRIS MEISEZAHL, CORNELIS F. CALKHOVEN, ALEXANDER BÜRKLE, XINGZHI XU & ZHAO-QI WANG: Poly (ADP-ribos) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. Nat. Commun. 2013, doi 10.1038/ncomms3993 www.nature.com/naturecommunications
Kontakt:
Astrid van der Wall
Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut e.V. (FLI)
Beutenbergstr. 11
07745 Jena – Germany
Tel.: +49 3641 65 63 14
Fax: +49 3641 65 63 14
Mail: avanderwall@fli-leibniz.de
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut e.V. (FLI)
Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut e.V. (FLI) widmet sich seit 2005 als erste deutsche Einrichtung auf breiter Basis der biomedizinischen Alternsforschung. Unter der wissenschaftlichen Leitung von Prof. Dr. K. Lenhard Rudolph konzentriert sich die Forschung auf drei Kernbereiche in 15 Forschungsgruppen: Genetik des Alterns, Molekulare Schäden und stochastische Prozesse des Alterns sowie Altern von Stammzellen. Ziel ist es, die ursächlichen Mechanismen des menschlichen Alterns zu entschlüsseln. Basierend auf diesem Wissen werden molekulare Therapien zur Verbesserung der Gesundheit im Alter (Gesundheitsspanne) entwickelt.
Aktuell arbeiten 330 Wissenschaftler und Wissenschaftlerinnen aus über 30 Nationen am FLI, davon fertigen etwa 90 Nachwuchswissenschaftler ihre Promotion am Institut an.
www.fli-leibniz.de
Leibniz-Gemeinschaft
Die Leibniz-Gemeinschaft verbindet 86 selbständige Forschungseinrichtungen, deren Ausrichtung von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften reicht. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung, unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Die Institute pflegen intensive Kooperationen mit Hochschulen, der Industrie und anderen Partnern im In- und Ausland und unterliegen maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 17.000 Personen, darunter 7.900 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei rund 1,5 Mrd. Euro.
www.leibniz-gemeinschaft.de
http://www.fli-leibniz.de
http://www.leibniz-gemeinschaft.de
Mechanismus der Regulation von Chk1 durch PAR während der DNA Replikation
Quelle: WooKee Min, Leibniz-Institut für Altersforschung Jena (Die Illustration nur in Verbindung mit dieser Pressemitteilung verwenden)
None
Die DNA-Doppelhelix-Träger unserer Erbinformation
Quelle: Adpic Bildagentur (Das Bild nur in Verbindung mit dieser Pressemitteilung verwenden)
None
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Ernährung / Gesundheit / Pflege, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Mechanismus der Regulation von Chk1 durch PAR während der DNA Replikation
Quelle: WooKee Min, Leibniz-Institut für Altersforschung Jena (Die Illustration nur in Verbindung mit dieser Pressemitteilung verwenden)
None
Die DNA-Doppelhelix-Träger unserer Erbinformation
Quelle: Adpic Bildagentur (Das Bild nur in Verbindung mit dieser Pressemitteilung verwenden)
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).