Einsteins Formel in neuem Licht

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
14.02.2014 10:02

Einsteins Formel in neuem Licht

Dr. Ute Schönfelder Stabsstelle Kommunikation/Pressestelle
Friedrich-Schiller-Universität Jena

    Physiker der Universitäten Jena und Graz simulieren die effektive Masse von Elementarteilchen

    Einsteins berühmte Formel E=mc2 beschreibt den Zusammenhang von Energie und Masse: Je massereicher ein Objekt oder Teilchen und je schneller es sich bewegt, umso größer seine Energie. „Anders als die Geschwindigkeit ist dabei die Masse eines Körpers eine feststehende Größe, zumindest unserer Alltagserfahrung nach“, macht Prof. Dr. Holger Gies von der Friedrich-Schiller-Universität Jena und dem Helmholtz-Institut Jena deutlich. Dennoch, so der theoretische Physiker weiter, habe sich in der modernen Physik das Konzept einer „effektiven“ Masse für Elementarteilchen durchgesetzt. Demnach kann sich die Masse eines Teilchens durch Wechselwirkung mit seiner Umgebung effektiv verändern: Beispielsweise können sich Elektronen innerhalb von Kristallen so verhalten, als hätten sie vorübergehend eine größere Masse.

    „Selbst den größten Teil unseres Körpergewichts, welches von den Kernen der Atome getragen wird, können wir als kollektive Effekte von sehr viel leichteren Grundbausteinen – den Quarks – verstehen“, erklärt Prof. Dr. Reinhard Alkofer von der Uni Graz, Mit-Autor einer neuen gemeinsamen Studie und Experte für die Theorie der starken Kernkraft. Nicht zuletzt fügen sich die fundamentalen Massen der Elementarteilchen in dieses Schema ein: sie können durch Wechselwirkung mit dem umgebenden Higgs-Feld verstanden werden. Diese Erkenntnis wurde kürzlich mit dem Nobelpreis für Physik geehrt.

    Um die effektive Masse auch „dingfest“ zu machen, muss sie allerdings mit einer Messgröße verknüpft werden können. Nicht immer gelingt dies den Physikern: beispielsweise wurde jahrzehntelang diskutiert, ob die effektive Masse, die der russische Physiker Volkov 1935 für das Elektron im Feld eines starken Lasers eingeführt hat, tatsächlich gemessen werden kann. Zu diesem Zweck haben die theoretischen Physiker aus Graz und Jena nun einen Effekt studiert, der besonders empfindlich von der Masse abhängt: den spontanen Zerfall des Vakuums.

    In einem extrem starken elektrischen Feld, etwa erzeugt durch einen Hochintensitätslaser, komme es zu einem spontanen Zerfall des Vakuums in Paare von Materie und Antimaterie, erläutert das Forscherteam. In der aktuellen Ausgabe des renommierten Fachblattes Physical Review Letters zeigen die Physiker mit Hilfe von Computersimulationen, wie Elektronen und Positronen mit unterschiedlichen „effektiven“ Massen erzeugt werden können. „Zwar sind heutige Laser noch nicht in der Lage, ein solches Experiment durchzuführen, jedoch können wir diesen Prozess präzise in Computer-Clustern simulieren“, betont Physik-Doktorand Christian Kohlfürst. Er hat für die aktuelle Studie seine Heimat-Uni Graz gegen die Jenaer Institute eingetauscht und hier ein Auslandssemester verbracht.

    In der Simulation des Vakuumzerfalls ist Einsteins berühmte Formel E=mc2 am Werk: Denn die Energie des elektrischen Feldes wird in die Masse der entstehenden Teilchen umgewandelt. Und wie die Physiker aus Jena und Graz in ihren Simulationen zeigen konnten, lasse sich die Masse der Teilchen variieren: Je stärker das simulierte elektrische Feld ist, desto schwerer sind die Zwillings-Paare aus Materie und Antimaterie, die das zerfallende Vakuum hervorbringt.

    Das Forscherteam hofft nun, dass seine Simulationen in künftigen Laserexperimenten bestätigt werden. Der Gedanke, dass sogar die Massen der Elementarteilchen mit Licht gesteuert werden können, ist für die Wissenschaftler außerordentlich faszinierend. Für praktische Anwendungen im Alltag tauge diese Erkenntnis aber nicht. „Es wäre aussichtslos zu versuchen, auf diese Weise etwa den eigenen Körper zum Wunschgewicht bringen zu wollen“, so die Forscher mit einem Augenzwinkern.

    Original-Publikation:
    Kohlfürst C et al.: Effective mass signatures in multiphoton pair production, Physical Review Letters 2014, URLs: http://link.aps.org/doi/10.1103/PhysRevLett.112.050402 und http://arxiv.org/abs/arXiv:1310.7836, DOI: 10.1103/PhysRevLett.112.050402

    Kontakt:
    Prof. Dr. Holger Gies
    Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
    Helmholtz-Institut Jena
    Fröbelstieg 1, 07743 Jena
    Tel.: 03641 / 947190
    E-Mail: Holger.Gies[at]uni-jena.de


    Weitere Informationen:

    http://link.aps.org/doi/10.1103/PhysRevLett.112.050402
    http://arxiv.org/abs/arXiv:1310.7836
    http://www.uni-jena.de


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Physiker Prof. Dr. Holger Gies von der Universität Jena hat gemeinsam mit Kollegen der Uni Graz in Computersimulationen Elementarteilchen mit unterschiedlicher Masse erzeugt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay