idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.02.2014 13:12

Feste Flüssigkeiten

Arne Dessaul Pressestelle
Ruhr-Universität Bochum

    Chemiker der Ruhr-Universität Bochum und der Universität Cambridge haben neuartige Metall-Organische Netzwerke entwickelt. Ähnlich einer Flüssigkeit weisen sie eine sehr große thermische Expansion auf, sie sind dennoch Feststoffe. Der thermische Expansionskoeffizient gibt an, wie stark sich ein Material bei Temperaturänderungen ausdehnt oder zusammenzieht. Das verblüffende Phänomen beruht auf dem Wechselspiel der starken und schwachen Kräfte zwischen den geordneten und den ungeordneten molekularen Bausteinen des neuen Materials. Die Forscher berichten darüber in der Zeitschrift „Advanced Functional Materials“.

    Ausgangsfrage
    Flüssigkeiten reagieren sensibel auf Wärme oder Kälte. Je nach Art der Temperaturänderung steigt oder fällt der gefärbte Alkoholfaden im Thermometer. Hundertmal weniger empfindlich sind dagegen feste Stoffe, Beton oder Stahl zum Beispiel. Dennoch kommt kein Bauwerk ohne Dehnungsfugen aus. Besonders ungewöhnlich verhält sich Wasser, denn es dehnt sich beim Gefrieren aus. Eis schwimmt, Seen frieren von der Oberfläche her zu, und bei 4 °C hat Wasser seine größte Dichte. Kann es feste Stoffe geben, die sich wie Flüssiges verhalten, wenn ihnen heiß oder kalt wird? Und wenn das möglich wäre, was könnte man damit anfangen?

    Extreme thermische Expansion
    Die Forscher aus Bochum und Cambridge haben einen Trick angewandt, um die thermische Expansionsfähigkeit von sogenannten Metal-Organischen Netzwerken gezielt zu erhöhen. An den geordneten, organischen Baueinheiten des festen Rahmenwerkes wurden zusätzliche Molekülgruppen angebracht. Diese füllen die nanometer-großen Porenräume des Netzwerks teilweise aus. Die Gruppen verhalten sie sich wie eine ungeordnete Flüssigkeit, aber sie können wegen der Bindung an die Porenwände den Raum nicht verlassen. So überträgt sich ihre Wärmebewegung auf das Netzwerk. Beim Erwärmen bläht sich das feste Material schlagartig um ca. 20% auf. Jedoch bleibt seine kristalline Eigenschaft erhalten. Der Vorgang ist vollständig umkehrbar. Temperaturabhängige Röntgenbeugung und kalorimetrische Messungen ergaben extrem große thermische Expansionskoeffizienten, wie man sie bisher nur von Flüssigkeiten kannte, nicht aber von Feststoffen. Die Art der Seitengruppen hat großen Einfluss auf den Effekt. So spielen Länge und chemischer Charakter die entscheidende Rolle. Durch die gezielte Synthese von „Festen Lösungen“, die verschiedene Seitenketten in zufälliger Verteilung und beliebigen Verhältnissen im Netzwerk vereinen, können thermischen Eigenschaften der Materialien noch genauer kontrolliert werden. Die Erkenntnisse legen Grundlagen für Anwendungen in der Wärmespeicherung und -übertragung sowie der Sensorik.

    Flexible Netzwerke
    Metall-Organische Netzwerke (kurz MOFs, aus dem Englischen: Metal-Organic Frameworks) sind hochgeordnete (kristalline) Festkörper mit einer dreidimensionalen Netzwerkstruktur. Sie sind aufgebaut aus Metallionen (Knotenpunkte) und verknüpfenden organischen Molekülen (Verbinder; engl. Linker). Die Materialien zeichnen sich durch unvergleichlich hohe Porenvolumina und innere Oberflächen aus. Sie besitzen großes Potenzial für Anwendungen in der Brennstoffspeicherung, bei der Kohlenstoffdioxid-Abtrennung sowie bei der Katalyse. MOFs können flexibel sein und auf äußere Einflüsse mit strukturellen Änderungen reagieren. Bei Aufnahme von Gastmolekülen (z. B. Lösungsmittel oder Gase) „blähen“ die flexiblen MOFs ihre Struktur auf; das erhöht das Speichervermögen.

    Projektförderung
    Die Fördermittel für die Arbeiten stammen von der Deutsche Forschungsgemeinschaft (SPP 1362 „Metal-Organic Frameworks“, EXC 1069 Exzellenzcluster „Ruhr Explores Solvation“), dem European Research Council, der Ruhr-University Research School und der Fonds der Chemischen Industrie.

    Titelaufnahme
    S. Henke, A. Schneemann, R. A. Fischer (2013): Massive Anisotropic Thermal Expansion and Thermoreponsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization, Advanced Functional Materials, 23, 5990-5996; DOI: 10.1002/adfm.201301256

    Weitere Informationen
    Prof. Dr. Roland A. Fischer, Lehrstuhl für Anorganische Chemie II – Organometallics & Materials Chemistry, Fakultät für Chemie und Biochemie der RUB, Tel. 0234-3224174
    roland.fischer@rub.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).