idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.05.2014 16:04

LRZ, TUM, to join Intel in establishing an Intel® Parallel Computing Center

Dr. Ellen Latzin Pressestelle
Bayerische Akademie der Wissenschaften

    The Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities and the Department of Informatics at the Technische Universität München (TUM) along with Intel Corporation have jointly established an Intel Parallel Computing Center (IPCC) called “Extreme Scaling on MIC/x86.”

    There are already a number of Intel Parallel Computing Centers existing and their mission is to facilitate software development of highly parallel programming codes for future supercomputers, especially those comprised of a very high number of processors with co-processors. The trend in supercomputing over the last several years has been toward processors with an increasing number of cores which are combined to form high-performance compute nodes. These modern supercomputers are characterised by declining memory per core, especially those relying on wide vector units. In addition, increasing numbers of computing operations are being transferred to coprocessors such as Intel’s Xeon Phi coprocessor, which are able to compute specific problems much more quickly and more energy efficiently.

    Developing and optimizing software for these highly parallel supercomputers with coprocessors allows for taking full advantage of the new technologies and achieving very significant increase in performance and energy efficiency. The IPCC founded by the LRZ, TUM, and Intel will tackle this challenge by optimizing four applications which are already running with excellent performance on SuperMUC (the supercomputer at the LRZ) for the next computer generation. Within the coming months, SuperMUC will undergo its scheduled expansion: one part of this will be based on Intel Xeon Phi™ coprocessors . The respective combination of processors and co-processors strongly relies on efficient software parallelization and will take developments in parallel software into account in the coming years in order to reach even faster computing systems.

    The four software packages to be optimized simulate earthquakes and seismic wave propagation (SeisSol), study the development of the cosmos (GADGET), apply molecular modeling methods to industrial applications (ls1 mardyn), and address high dimensional problems (SG++) that occur in data mining or in financial mathematics. All these programs are already running on supercomputers, specifically on the SuperMUC, with excellent performance in the Petaflops range. They now need to be optimized to run on computer systems in the range of hundreds of Petaflops and more.

    The Intel Parallel Computing Center also aims beyond the further development of these simulation programs. Ultimately, its goal is to understand the process of developing scientific software for future computing systems, both in terms of optimizing the computational power as well as the energy efficiency, and to develop a model that captures this knowledge. The results and conclusions from this endeavor will merge into the ongoing development of the four simulation programs and will also be published in scientific journals for public dissemination.

    “The expertise in the field of parallelization of applications at the TUM and the LRZ in conjunction with the Intel Parallel Computing Center Program is a combination with phenomenal synergies,” affirms Stephan Gillich, HPC Director EMEA, Intel GmbH “Systems with ever-increasing computational power which are based on parallel structures will help us to solve important challenges in scientific as well as industrial arenas.”

    According to Professor Arndt Bode, Chairman of the Board of the LRZ, “With this Parallel Computing Center, the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, the Informatics Department of the TUM, and Intel Corporation are working together to broaden their competence for the efficient operation of future supercomputers in nearly all scientific arenas. “

    The TUM and the LRZ are represented in the Intel Parallel Computing Center “Extreme Scaling on MIC/x86” by Professors Michael Bader, Arndt Bode, and Hans-Joachim Bungartz.

    Contact:
    Dr. Ludger Palm
    Boltzmannstr. 1
    D-85748 Garching
    Telephone +49 89 35831 8792
    Email: presse@lrz.de

    The Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences is the general IT service provider to the scientific and academic communities in the Munich area. LRZ operates the Munich Scientific Network (MWN), offers archiving and backup of large amounts of data and delivers high performance and supercomputing facilities for all German universities and PRACE partners via the Gauss Centre for Supercomputing (GCS).


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Informationstechnik
    überregional
    Buntes aus der Wissenschaft
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).