idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.03.2015 09:27

MDC-Forscher steigern Effizienz des Redigierens im Erbgut – „Innovatives Forschungsgebiet“

Barbara Bachtler Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

    Sie trägt einen komplizierten Namen und ist eine neue Gentechnikmethode, die Forscher weltweit elektrisiert: die CRISPR-Cas9-Technik, mit der sich das Erbgut von Zellen und Organismen präzise und mit hoher Effizienz redigieren lässt. Jetzt haben Dr. Van Trung Chu und Prof. Klaus Rajewsky vom Max-Delbrück-Centrum (MDC) Berlin-Buch sowie Dr. Ralf Kühn (MDC und Berliner Institut für Gesundheitsforschung, BIH) das Verfahren, mit dem Gene gezielt verändert werden können, durch molekulare Tricks deutlich effizienter gemacht. Die Erfolgsrate der Methode konnte um das Achtfache erhöht werden, was die Grundlagenforschung massiv beschleunigt (Nature Biotechnology online, doi:10.1038/nbt.3198)**.

    „Wofür früher Jahre benötigt wurden, genügen jetzt Monate“, hebt der Genforscher und Immunologe Prof. Rajewsky die Bedeutung der CRISP-Cas9-Technik zur Modifizierung des Genoms hervor. Das CRISP-Cas9-Verfahren macht Forschung nicht nur erheblich schneller, sondern ist zugleich auch effizienter und preiswerter als bisherige Verfahren und zudem leichter zu handhaben.

    Die CRISPR-Cas9-Technik ermöglicht es an ausgewählten Positionen im Genom von Zellen oder Modellorganismen gezielte DNA-Doppelstrangbrüche zu erzeugen. An solchen künstlich herbeigeführten Bruchstellen können Forscher Gene einfügen, herausschneiden oder den genetischen Code nach Wunsch verändern.

    Säugetierzellen verfügen über zwei verschiedene natürliche Mechanismen, um entstandene DNA-Doppelstrangbrüche zu reparieren. Der HDR (homology-directed repair) Reparaturweg ermöglicht das Einfügen (Insertion) vorgeplanter Genmodifikationen mit von außen zugeführten DNA-Molekülen, die Sequenzidentität mit dem Zielgen besitzen und als Reparaturmatrize dienen. Die HDR Reparatur ist sehr präzise aber nur wenig effizient.

    Der andere Reparaturmechanismus, NHEJ (non-homologous end joining), ist in der Natur wesentlich häufiger und effizienter, da hierbei die DNA-Stränge ohne Reparaturmatrize einfach wieder neu verbunden werden, wobei häufig aber kurze Sequenzbereiche verloren werden. Die NHEJ Reparatur ermöglicht somit nur die Erzeugung kurzer, unpräziser Deletionen, also der Entfernung von DNA-Bausteinen, aber nicht von Insertionen und vorgeplanter Sequenzmodifikationen im Genom.

    Viele Forscher arbeiten im Labor daran, die Reparaturverfahren für präzisere Modifizierungen des Genoms ohne Redigierfehler zu optimieren, so auch Dr. Van Trung, Prof. Rajewsky und Dr. Kühn. Ihnen gelang es jetzt, die Effizienz des präziser arbeitenden Reparaturverfahrens HDR zu erhöhen, indem sie den in Zellen dominanten Reparaturgehilfen von NHEJ, das Enzym DNA Ligase IV, vorübergehend ausschalteten. Dazu setzen sie unter anderem Proteine und „small molecules“ ein.

    „Wir nutzen die Trickkiste der Natur, indem wir mit Hilfe von Proteinen von Adenoviren die Ligase IV blockierten und so die Effizienz des Verfahrens bis um das Achtfache erhöhen konnten“, sagt Dr. Kühn. So gelang es den Forschern in über 60 Prozent aller manipulierten Mauszellen ein Gen an einer bestimmten Stelle ins Genom einzufügen (Knock-In). Dr. Kühn leitet am MDC seit kurzem die Forschungsgruppe „iPS zellbasierte Krankheitsmodellierung“ und war zuvor am Helmholtz Zentrum München tätig. „Die Expertise von Ralf Kühn ist für die Genforschung am MDC und für unsere Forschungsgruppe von enormer Bedeutung“, betont Prof. Rajewsky.

    Zeitgleich mit der Arbeit der MDC-Forscher ist eine weitere, ähnliche Publikation zur CRISPR-Cas9-Technologie ebenfalls in Nature Biotechnology erschienen. Sie stammt aus dem Labor von Hidde Ploegh am Whitehead Institut in Cambridge, MA, USA.

    Ziel: Somatische Gentherapie von Krankheiten mit der CRISP-Cas9-Technik
    Forscher setzen die erst 2012 entwickelte CRISP-Cas9-Technik bereits zur Korrektur von Gendefekten bei Mäusen im Labor ein. Eine weitere Einsatzmöglichkeit sind im Labor erstellte induzierte pluripotente Stammzellen (iPS), die in bestimmte menschliche Zellen oder Gewebe weiterentwickelt werden können. Mit den neuen Werkzeugen der CRISPR-Cas9 Technik können jetzt in Patienten identifizierte, krankheitsassoziierte Mutationen in iPS-Zellen eingeführt werden und ermöglichen die Erforschung von Krankheitsmechanismen direkt in menschlichen Zellen. „Langfristiges Ziel ist ebenfalls, die CRISPR-Cas9-Technik auch für die somatische Gentherapie beim Menschen zur Behandlung schwerer Erkrankungen einzusetzen“, erklärt Prof. Rajewsky.

    Prof. Rajewsky: „Eines der aktuellsten Gebiete in den Lebenswissenschaften und ein innovatives Feld“
    „Die Anwendung der CRISPR-Cas9-Technik ist derzeit eines der aktuellsten Themen in den Lebenswissenschaften und ein innovatives Feld“, erklärt Prof. Rajewsky. Er weist darauf hin, dass die neuen Möglichkeiten eines gezielten Redigierens des Erbguts in den USA zurzeit eine intensive Debatte ausgelöst haben, weil die neuen Präzisionswerkzeuge theoretisch auch gezielte Veränderungen der Keimbahn des Menschen ermöglichen. Letztere sind zwar in vielen Ländern, so auch Deutschland, gesetzlich verboten, aber ein weltweites Verbot gibt es nicht. Die MDC-Forscher sind zwar von den durch die CRISPR-Cas9-Technologie eröffneten neuen Chancen für die Grundlagenforschung und Biomedizin fasziniert, lehnen aber gentechnische Manipulation der menschlichen Keimbahn strikt ab.

    **Increasing the efficiency of homology-directed repair for CRISPR/Cas9-induced precise gene editing in mammalian cells
    Van Trung Chu1, Timm Weber1, Benedikt Wefers2,3, Wolfgang Wurst2,3,4 , Sandrine Sander1, Klaus Rajewsky1*, Ralf Kühn1,2,5*
    1Max Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
    2Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
    3Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 81377 Munich, Germany
    4Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
    5Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany
    *corresponding authors

    Kontakt:
    Barbara Bachtler
    Pressestelle
    Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
    in der Helmholtz-Gemeinschaft
    Robert-Rössle-Straße 10
    13125 Berlin
    Tel.: +49 (0) 30 94 06 - 38 96
    Fax: +49 (0) 30 94 06 - 38 33
    e-mail: presse@mdc-berlin.de
    http://www.mdc-berlin.de/de


    Weitere Informationen:

    http://www.sciencemag.org/content/early/2015/03/18/science.aab1028.full.pdf
    http://www.nature.com/news/ethics-of-embryo-editing-divides-scientists-1.17131


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).