idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.03.2015 11:42

Turning back time by controlling magnetic interactions

Dr. Joerg Harms Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    In a publication in Nature Communications, researchers at the Max Planck Institute for the Structure and Dynamics of Matter laid the theoretical foundation for more efficient magnetic storage.

    In many materials, macroscopic magnetic properties emerge when microscopically small magnets align in a fixed pattern throughout the whole solid. In a publication in Nature Communications, Johan Mentink, Karsten Balzer and Martin Eckstein from the University of Hamburg at the Center for Free-Electron Laser Science (CFEL) and the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) have predicted that the interactions causing this alignment can be changed almost instantaneously and reversibly under the influence of a laser pulse. In future, this effect may be used for the development of faster magnetic storage. Besides this, the finding implies the highly counter-intuitive consequence that the magnetic dynamics can effectively run backwards in time under the influence of a sufficiently strong time-periodic laser field.

    The strongest interactions in magnetic materials are called exchange interactions since they are caused by the exchange of electrons between individual microscopic magnets, called spins. A spin can feel a force from its neighbor that is up to a hundred times larger than the magnetic fields available in the laboratory. Johan Mentink and collaborators have shown that the electric field of the laser can influence the electrons during this exchange process and thus modify the interaction. Owing to the strength of the exchange interactions, this holds the promise to achieve a control of magnetism on the fastest possible timescale, with high relevance for technological applications such as magnetic storage.

    While it has been demonstrated before that exchange interactions can be modified very rapidly, the ultimate control of exchange interactions would be achieved when one can selectively strengthen or weaken the interactions when the electric field is turned on and off, for example. This has now been demonstrated by exposing the magnetic material to a time-periodic electric field that is deliberately tuned to avoid a direct excitation of the electrons. Interestingly, even for the model system considered, this protocol already displays a rich control: the exchange interaction can be enhanced, weakened, and even reverse sign, thus favoring parallel instead of anti-parallel alignment of neighboring spins.

    Quite surprisingly, upon changing the sign of the exchange interaction by the periodic electric laser field, it was observed that the spin dynamics turns back time. Mentink: ‘This demonstration caused a lot of excitement during our studies. Intuitively, one expects that a sign change of the interaction causes a rapid change of the magnetic state, but we find instead that the spins evolve back to their original orientation without any signature of a different magnetic state’. As a result, our studies do not only have high relevance for technological applications, but also for fundamental studies on the time-reversibility of quantum systems.

    Contact persons:

    Prof. Dr. Martin Eckstein
    Max-Planck-Institut für Struktur und Dynamik der Materie
    Luruper Chaussee 149
    22761 Hamburg / Germany
    Tel.:+49 (0)40 8998-6270
    Email: martin.eckstein@mpsd.cfel.de

    Dr. Johan Mentink
    Radboud University
    Institute for Molecules and Materials
    Heyendaalseweg 135
    6525 AJ Nijmegen / The Netherlands
    Tel.: +31 (0)24 3652903
    Email: j.mentink@science.ru.nl

    Original publication:
    Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708


    Weitere Informationen:

    http://dx.doi.org/10.1038/ncomms7708 Original publication
    http://www.mpsd.mpg.de/en/research/cmd/theo Research group of Prof. Dr. Martin Eckstein
    http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter


    Bilder

    Illustration of time reversal: under the influence of a periodic electric field from a laser (yellow), the evolution of the spins (red) goes backward in time.
    Illustration of time reversal: under the influence of a periodic electric field from a laser (yellow ...
    Graphics: J.M. Harms, MPSD
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Illustration of time reversal: under the influence of a periodic electric field from a laser (yellow), the evolution of the spins (red) goes backward in time.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).