idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.05.2015 11:16

Fusion protein controls design of photosynthesis platform

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Collaborative project uncovers the role of a protein in the formation and maintenance of the inner membrane structures of photosynthetic systems

    Chloroplasts are the solar cells of plants and green algae. In a process called photosynthesis, light energy is used to produce biochemical energy and the oxygen we breathe. Thus, photosynthesis is one of the most important biological processes on the planet. A central part of photosynthesis takes place in a specialized structure within chloroplasts, the thylakoid membrane system. Despite its apparent important function, until now it was not clear how this specialized internal membrane system is actually formed. In a collaborative project, researchers at Johannes Gutenberg University Mainz (JGU) in Germany have now identified how this membrane is generated. According to their findings, a protein called IM30 plays a major role by triggering the fusion of internal membranes. The study elucidating the role of IM30 involved biologists, chemists, biochemists, and biophysicists at Mainz University and the Max Planck Institute for Polymer Research. Their results have recently been published in the journal Nature Communications.

    Chloroplasts are organelles found in higher plants and green algae. They contain an internal membrane system, so-called thylakoid membranes, where the key processes of photosynthesis take place. "A detailed understanding of photosynthesis and the associated molecular processes is essential to properly comprehend life on our planet," emphasized Professor Dirk Schneider of the Institute of Pharmaceutical Sciences and Biochemistry at JGU, who coordinated the study. "Despite the significance of the process, we know almost nothing about how these special membranes are formed and maintained." It had not previously been possible to identify a single fusion-mediating protein in photosynthetic cells, even though it was perfectly clear that such proteins have to be involved in the development of thylakoid membranes.

    With this in mind, the Mainz-based research team isolated and investigated the protein IM30 from a blue-green alga, which might be classified as a "free-living chloroplast." IM30 – the "IM" stands for "internal membrane" while 30 is its atomic mass (30 kilodaltons) – was first described in the mid-1990s and it was demonstrated that it binds to internal membranes. Thanks to the combined expertise of the teams headed by Professor Dirk Schneider, Professor Jürgen Markl of the JGU Institute of Zoology, and Professor Tobias Weidner of the Max Planck Institute for Polymer Research it has now emerged that IM30 forms a ring structure that specifically interacts with phospholipids of the membranes. "This binding alters the membrane structure and under certain conditions can lead to membrane fusion," explained Schneider. In absence of IM30, thylakoid membranes are noticeably deteriorated, which can subsequently lead to loss of cell viability. The IM30 fusion protein provides a starting point for future research, unraveling new types of membrane fusion mechanisms in chloroplasts and blue-green algae.

    The interdisciplinary research project was primarily undertaken by doctoral candidates at the Max Planck Graduate Center (MPGC). The MPGC was founded in June 2009 to support joint projects and shared doctorates at Johannes Gutenberg University Mainz and the Max Planck Institutes for Polymer Research and for Chemistry, both of which are based in Mainz.

    Publication:
    Raoul Hennig et al.
    IM30 triggers membrane fusion in cyanobacteria and chloroplasts
    Nature Communications, 8. Mai 2015
    DOI: 10.1038/ncomms8018

    Illustration:
    http://www.uni-mainz.de/bilder_presse/09_pharma_membranfusion.jpg
    An IM30 ring docks with internal membranes. In the background is part of an image of a blue-green alga prepared using an electron microscope. A 3D model of the IM30 ring can be seen in the foreground. The images are not to scale.
    Source: Dirk Schneider and Jürgen Markl

    Further information:
    Professor Dr. Dirk Schneider
    Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
    Johannes Gutenberg University Mainz (JGU)
    55099 Mainz, GERMANY
    phone +49 6131 39-25833
    fax +49 6131 39-25348
    e-mail: dirk.schneider@uni-mainz.de
    http://www.bio.chemie.uni-mainz.de/46.php


    Weitere Informationen:

    http://www.uni-mainz.de/presse/18298_ENG_HTML.php - press release ;
    http://www.bio.chemie.uni-mainz.de/46.php – Prof. Dirk Schneider ;
    http://www.bio.uni-mainz.de/zoo/312_DEU_HTML.php – Prof. Jürgen Markl ;
    http://www.mpip-mainz.mpg.de/~weidner – Prof. Tobias Weidner ;
    http://www.nature.com/naturecommunications – Nature Communications


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).