Nukleare Quantenoptik kontrolliert und verlangsamt Röntgenlicht.
Physiker des Heidelberger MPI für Kernphysik haben in Kooperation mit dem Deutschen Elektronen-Synchrotron DESY und der Universität Jena erstmals zwei grundlegende Effekte der Quantenoptik mit Atomkernen für Röntgenlicht demonstriert. Durch resonante Streuung an einer Dünnschicht-Eisenprobe konnten sie Welleneigenschaften von Lichtpulsen im Röntgenbereich gezielt kontrollieren und diese gegenüber der Lichtgeschwindigkeit um einen Faktor 10000 verlangsamen [Zwei Beiträge in Physical Review Letters, 18. Mai 2015].
Die Kontrolle der Wechselwirkung von Licht und Materie beflügelt seit Jahrhunderten die Aktivitäten von Naturwissenschaftlern aller Disziplinen. Ein enormer Durchbruch war dabei die Erfindung des Lasers vor über 50 Jahren, der es heutzutage erlaubt, die Wechselwirkung von Licht und Materie auf atomarer Ebene präzise zu kontrollieren. Dies ist das Gebiet der Quantenoptik, die hauptsächlich im sichtbaren und infraroten Bereich angewendet wird. Inzwischen gibt es mit Synchrotrons und Freie-Elektronen-Lasern äußerst leistungsfähige Strahlungsquellen für Röntgenstrahlung mit Laserqualität. Dies erweitert das Gebiet der Quantenoptik von der Wechselwirkung mit der Atomhülle auf Strahlungsübergänge in Atomkernen. Physiker des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) haben in Zusammenarbeit mit Gruppen vom Deutschen Elektronen-Synchrotron DESY und der Universität Jena am Synchrotron PETRA III des DESY in Hamburg und an der European Synchrotron Radiation Facility (ESRF) in Grenoble in zwei neuen Experimenten nukleare Quantenoptik an Eisenkernen demonstriert. Im ersten Experiment diente das Röntgenlichts als Werkzeug, um nach der Wechselwirkung präzise Informationen über die untersuchten Eisenkerne zu erlangen. Im zweiten Experiment waren die Rollen vertauscht, und die Eisenkerne wurden verwendet, um die Ausbreitungsgeschwindigleit von Röntgenpulsen kontrolliert abzubremsen, was vielfältige Anwendungen erschließt. Die konzeptionelle Federführung und die theoretische Modellierung lag dabei bei der der Gruppe von Jörg Evers in der Abteilung für theoretische Quantendynamik des MPIK, während die experimentelle Vorbereitung und Durchführung von der Gruppe um Ralf Röhlsberger am DESY koordiniert wurde.
Kernstück der Experimente ist eine am DESY hergestellte Dünnschicht-Probe aus Eisenatomen, eingebettet zwischen Röntgenstrahlung reflektierenden Schichten. Diese wird im flachen Winkel mit Röntgenlicht bestrahlt und das reflektierte Licht gemessen, wobei im gewählten Frequenzbereich die Eisenkerne resonant wechselwirken. Im ersten Experiment, durchgeführt am Synchrotron PETRA III bei DESY, diente die Probe als sogenanntes Röntgen-Interferometer: Die reflektierte Strahlung enthält zum einen Beiträge, die durch die resonante Wechselwirkung mit den Eisenkernen verzögert wurden. Zum anderen enthält sie nicht-resonante Beiträge, die nicht an den Kernen gestreut wurden. Die Verzögerung durch die Eisenkerne führt zu einer Verschiebung der Wellenfronten der beiden Beiträge, welche in Abb. 1a durch zwei mögliche Strahlengänge dargestellt ist. Die resonante Streuung (rot) erfolgt in einem schmalen Frequenzband, während die übrige reflektierte Strahlung (blau) breitbandig ist. Durch Überlagerung (Interferenz) dieser beiden Anteile ergibt sich ein sogenanntes Fano-Profil, dessen asymmetrische Linienform von der Verzögerung durch die Eisenkerne abhängt. Diese kann im Experiment auf einfache Weise über den Reflexionswinkel kontrolliert werden (Abb. 1b). Die Theorie der Fano-Interferenz lässt sich auf viele verschiedene Beispiele in der Spektroskopie anwenden: z. B. auf die Wechselwirkung von Ultraviolett-Laserpulsen mit Heliumatomen, die kürzlich am MPIK in der Gruppe von Thomas Pfeifer untersucht wurde. Auch im aktuellen Fall der Röntgenstreuung an Atomkernen lässt sich aus der Linienform exakt die Verzögerung durch die Eisenkernene extrahieren, was die Basis für eine vollständige Charakterisierung ihres Quantenzustands im Röntgenbereich bildet. Eine weitere mögliche Anwendung ist die hochpräzise Stabilisierung von Röntgeninterferometern.
Kilian Heeg hat im Rahmen seiner Doktorarbeit am MPIK sowohl durch Modellrechnungen als auch im Experiment die wesentlichen Beiträge zu der Studie geliefert. Die Motivation für das zweite Experiment schildert er so: „Einerseits besteht Bedarf an möglichst schmalbandiger (energiescharfer) Röntgenstrahlung, andererseits möchten wir in Zukunft nichtlineare Effekte in der nuklearen Quantenoptik demonstrieren.“ Voraussetzung dafür ist es, die Wechselwirkung zwischen Röntgenlicht und Eisenkernen zu verstärken. Hierzu kontrollierten die Physiker die Wechselwirkung mit den Eisenkernen derart, dass die eingestrahlten Röntgenpulse erheblich verlangsamt wurden – und zwar auf weniger als ein Zehntausendstel der Lichtgeschwindigkeit im Vakuum. Die „normale“ Verlangsamung von sichtbarem Licht in einem Medium wie Glas beträgt hingegen nur etwa 30%. Die starke Verlangsamung konnte erreicht werden, indem die einzelnen zum Röntgenpuls beitragenden Lichtwellen durch die Wechselwirkung mit den Eisenkernen geeignet gegeneinander verzögert wurden. Zur Detektion des verlangsamten Lichts nutzten die Physiker trickreich die Eigenschaft der Eisenprobe, bei resonanter Streuung die Polarisation des Röntgenlichtes zu drehen. Ein entsprechendes leistungsfähiges Polarimeter, das an der Universität Jena entwickelt wurde, erlaubt den ungewünschten nicht-resonanten Anteil zu unterdrücken (Abb. 2a). Damit war der verlangsamte Puls zugänglich.
„Um diesen Effekt direkt zu messen, haben wir eine dünne Eisenfolie in den Strahlengang eingebracht, die mit dem gleichen Kernübergang wie in der Probe einen schmalen Teil des ansonsten sehr breiten Frequenzspektrums des Röntgenlichts herausschneidet“, erläutert Gruppenleiter Jörg Evers. Dies führt dazu, dass der sehr kurze Röntgenpuls in seinem zeitlichen Verlauf eine echoartige Serie von Nachpulsen erhält (Abb. 2b). Diese erscheint auch bei dem resonant gestreuten verlangsamten Licht – aber eben um eine Zeit τ verzögert (Abb 2c). Durch Bewegung der Eisenfolie lässt sich deren Absorptionsfrequenz gegenüber der Probe durch den Dopplereffekt verstimmen und so die Verzögerung kontrollieren, die bis zu 35 Nanosekunden beträgt (Abb. 2d). Das „langsame“ Röntgenlicht kann die Wechselwirkung mit den Eisenkernen effektiv erhöhen. Damit hofft die Gruppe um Jörg Evers, einen Zugang zu nichtlinearer Wechselwirkung im Röntgenbereich zu gewinnen, die bisher nicht beobachtet werden konnte. (JE/BF)
Originalpublikationen:
Interferometric phase detection at x-ray energies via Fano resonance control
K. P. Heeg, C. Ott, D. Schumacher, H.-C. Wille, R. Röhlsberger, T. Pfeifer, and J. Evers
Physical Review Letters 114, 207401 (2015); DOI: 10.1103/PhysRevLett.114.207401
Tunable sub-luminal propagation of narrowband x-ray pulses
Kilian P. Heeg, Johann Haber, Daniel Schumacher, Lars Bocklage, Hans-Christian Wille, Kai S. Schulze, Robert Loetzsch, Ingo Uschmann, Gerhard G. Paulus, Rudolf Rüffer, Ralf Röhlsberger, and Jörg Evers
Physical Review Letters 114, 203601 (2015); DOI: 10.1103/PhysRevLett.114.203601
Kontakt:
PD Dr. Jörg Evers
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516 177
E-Mail: joerg.evers@mpi-hd.mpg.de
Dr. Kilian Heeg
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516 178
E-Mail: kilian.heeg@mpi-hd.mpg.de
Prof. Dr. Thomas Pfeifer
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516 380
E-Mail: thomas.pfeifer@mpi-hd.mpg.de
Prof. Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel.: +49 40 8998 4503
E-Mail: ralf.roehlsberger@desy.de
Prof. Dr. Gerhard Paulus
Friedrich-Schiller-Universität Jena
Tel.: +49 3641 9 47200
E-Mail: gerhard.paulus@uni-jena.de
http://www.mpi-hd.mpg.de/keitel/evers/ Theorie-Gruppe "Correlated and X-Ray Quantum Dynamics", MPIK (Jörg Evers)
http://www.desy.de/forschung/anlagen__projekte/petra_iii/index_ger.html Röntgenstrahlquelle PETRA III am DESY
http://www.physik2.uni-jena.de/inst/nlo/start.html Lehrstuhl Nichtlineare Optik, Universität Jena
http://physics.aps.org/articles/v8/47 Physics Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Abb. 1: (a) Strahlengang des resonant (rot) und nicht-resonanten Röntgenlichts durch die Probe mit e ...
MPI für Kernphysik
None
Abb. 2: (a) Strahlengang durch das Polarimeter. (b) Absorptionslinie erzeugt echoartige Zeitstruktur ...
MPI für Kernphysik
None
Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).