idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.09.2015 11:19

Enzymatische mikromotorgesteuerte CO2-Fixierung in Wasser

Dr. Renate Hoer Abteilung Öffentlichkeitsarbeit
Gesellschaft Deutscher Chemiker e.V.

    Ausfällung und Mineralisierung von CO2 aus Meerwasser durch enzymatische Umwandlung zu Carbonat mit einem mobilen Mikromotor

    Zur raschen Dekontamination wässriger Lösungen haben amerikanische Wisseschaftler einen sich frei bewegenden mikroskopisch kleinen Wischmopp entwickelt: Damit lässt sich CO2 aus Wasser abscheiden. Mit einem frei beweglichen, chemisch angetriebenen Mikromotor als Enzymträger wandeln sie das CO2 in festes Calciumcarbonat um und entziehen es somit dem System. Ihre Ergebnisse beschreiben sie in der Zeitschrift Angewandte Chemie.

    Eine der Möglichkeiten, die anhaltende, menschengemachte massive Freisetzung von Kohlendioxid aus fossilen Rohstoffen zu mildern, sehen Wissenschaftler in der direkten Mineralisierung des CO2 am Ort der Freisetzung. Als Speicherform ist Calciumcarbonat geeignet, ein Mineral, das marine Organismen über Millionen von Jahren hinweg durch Biokonversion aus Kohlendioxid produziert und zu riesigen Kalkgebirgen aufgetürmt haben. Unkatalysiert wird Kohlendioxid im wässrigen Medium jedoch zu langsam zu Carbonat umgesetzt, sodass diese Reaktion für die großvolumige Abtrennung von Kohlendioxid unpraktisch ist. An der Universität von Kalifornien in San Diego haben nun Joseph Wang und sein Team diese Reaktion durch einen raffinierten chemisch-nanotechnlologischen Ansatz erheblich beschleunigt. "Unsere Methode verbindet die biokatalytische Aktivität der Carboanhydrase [ein Metalloenzym, das die Hydratisierung von CO2 zu Hydrogencarbonat katalysiert] mit dem chemischen Eigenantrieb von Mikromotoren, die sich wie ein Wischmopp im Mikromaßstab selbstständig durch CO2-gesättigte Proben bewegen", schreiben die Wissenschaftler. Der Hauptvorteil hierbei sei die automatische Durchmischung und Reinigung lediglich durch Zugabe von umweltfreundlichem Wasserstoffperoxid als Kraftstoff.

    Als Mikromotoren dienen Röhrchen aus einem modifizierten Kunststoff von sechs Mikrometer Länge. Im Innenraum dieser Röhrchen wird das Wasserstoffperoxid katalytisch in Wasser und gasförmigen Sauerstoff umgewandelt. Diese Gasbläschen geben den nötigen Rückstoß, um das Mikrorohr voranzutreiben. Außen an den Röhrchen haben die Wissenschaftler über einen chemischen Anker die Carboanhydrase angebracht. Angetrieben durch das Wasserstoffperoxid zieht nun die entstandene Enzym-Mikromotor-Kombination durch die wässrige Lösung wie ein U-Boot und erreicht dabei Geschwindigkeiten von mehr als 100 Mikrometer pro Sekunde, also 18-mal seine Länge, sagen die Autoren. Dabei ist die hohe Geschwindigkeit nicht der einzige Vorteil, denn durch die Fixierung des Enzyms an der Oberfläche wird es gleichzeitig für seine Reaktion, die CO2-Hydratisierung, stabilisiert.

    Im Test dekontaminierte der Mikrowischer CO2-haltige Lösungen einschließlich Meerwasser effizient und innerhalb von Minuten. Das liest sich wie der Grundstock von neuen Calciumcarbonatgebirgen aus Menschenhand.

    (2953 Anschläge)

    Über den Autor

    Joseph Wang ist Lehrstuhlinhaber der Abteilung für Nanotechnologie der UCSD, La Jolla, USA. Forschungsschwerpunkt seiner Arbeitsgruppe ist die Nanobioelektronik, dabei insbesonbesondere die Entwicklung von neuen Nanomotoren, Nanorobotern und Nanoaktuatoren, elektrochemischen Biosensoren und Bioelektronik, die Entwicklung von tragbaren Sensorsystemen sowie modernen Materialien für die Energiegewinnung. Professor Wang, der mehrere wichtige Preise gewann und 2014 auf der Liste der einflussreichsten Wissenschaftler stand, ist ebenfalls Direktor des Zentrums für tragbare Sensoren der UCSD.

    Angewandte Chemie: Presseinfo 38/2015

    Autor: Joseph Wang, University of California, San Diego (USA), http://joewang.ucsd.edu/

    Permalink to the original article: http://dx.doi.org/10.1002/ange.201505155

    Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.


    Weitere Informationen:

    http://presse.angewandte.de


    Bilder

    CO2 Kreislauf und Fixierung im Wasser
    CO2 Kreislauf und Fixierung im Wasser
    (c) Wiley-VCH
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Chemie, Meer / Klima, Umwelt / Ökologie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    CO2 Kreislauf und Fixierung im Wasser


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).