idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.12.2015 18:00

Relative Wahrnehmung der Welt

Dr. Stefanie Merker Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie

    Optische Täuschungen zeigen, dass unsere Wahrnehmung der Welt oft relativ ist: Ein Objekt wirkt heller, wenn der Hintergrund dunkel ist, und dunkler, wenn der Hintergrund hell ist. Solche Täuschungen zeigen, dass wir das, was wir sehen, mit einem Bezugspunkt vergleichen. Was beim Erkennen solch relativer Kontrastsignale jedoch auf zellulärer Ebene im Gehirn passiert, ist weitgehend unbekannt. Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben nun durch Verhaltensexperimente an der Fruchtfliege Drosophila gezeigt, dass räumliche Kontrastinformationen und Bewegungsreize in unterschiedlichen Nervenzellschaltkreisen verarbeitet werden.

    Optische Täuschungen gaukeln dem Betrachter etwas vor, das eigentlich nicht da ist. Dies ist jedoch kein Fehler unseres Sehvermögens. Die speziellen Bedingungen der Täuschung zeigen vielmehr, wie das Gehirn unsere Umgebung analysiert. Viele Effekte beruhen dabei auf relativer Wahrnehmung: Ein Objekt wirkt kleiner, wenn es in der Nähe von großen Objekten platziert wird, oder größer, wenn es von kleineren Objekten umgeben ist. Andere Illusionen basieren auf räumlichem Kontrast. Ein einheitlich grauer Balken vor einem Hintergrund mit Helligkeitsverlauf erscheint, als wäre die eine Seite des Balkens dunkler als die andere. Bewegungsillusionen täuschen dagegen Bewegung vor, wo keine ist. Wird der beschriebene graue Balken vor dem Hintergrundsverlauf beispielsweise dynamisch heller und dunkler, entsteht der Eindruck einer Bewegung. Diese Täuschung ist als Kontrast-Bewegungs-Illusion bekannt.

    Um zu verstehen, wie das Gehirn die optischen Informationen verarbeitet, untersuchen Alexander Borst und seine Abteilung am Max-Planck-Institut für Neurobiologie einen Meister des Bewegungssehens, die Fliege. Basierend auf den bisherigen Erkenntnissen zum Bewegungssehen der Fliege sollten die Tiere auf Bewegungsillusionen wie die Kontrast-Bewegungs-Illusion nicht reagieren. „Das wollten wir natürlich genauer wissen“, sagt Armin Bahl, der Erstautor der im Fachmagazin Neuron erschienenen Studie. Für ihre Untersuchungen benutzten die Wissenschaftler eine ausgeklügelte Verhaltensapparatur: Befestigt an einem kleinen Haken läuft die Fliege, umgeben von einem künstlichen Panoramabild, auf einem schwebenden Styroporball. Die Bewegung des Balls zeigt die Laufrichtung der Fliege an. Dies lässt wiederum Rückschlüsse auf die Wahrnehmung der Tiere zu. Als die Wissenschaftler in diesem Versuchsaufbau die Kontrast-Bewegungs-Illusion testeten, waren sie überrascht: Fliegen reagierten sehr stark auf die Illusionen und nahmen eine vermeintliche Bewegung in die gleiche Richtung wahr, wie auch die menschlichen Betrachter.

    Aufgabenteilung im Fliegenhirn

    Um die neuen Erkenntnisse weiter zu untersuchen, schalteten die Forscher mit Hilfe eines genetischen Tricks die Zellen im Fliegenhirn aus, die für das Bewegungssehen zuständig sind. Solche Fliegen sind vollständig bewegungsblind, wie ein Verhaltensexperiment belegt: Wird eine Fliege von einem rotierenden Streifen-Zylinder umgeben, so drehen sich normale Fliegen mit der Bewegung mit – nach rechts, wenn sich der Zylinder nach rechts dreht, und nach links, wenn die Drehung nach links läuft. Dieses angeborene Verhalten von Fliegen und vielen anderen Tieren wird optomotorische Reaktion genannt. Sie hilft den Tieren, und auch uns Menschen, den Kurs zu stabilisieren und geradeaus zu fliegen oder zu laufen. Bewegungsblinde Fliegen zeigen dagegen keine optomotorische Reaktion.

    Als die Wissenschaftler den bewegungsblinden Fliegen die Kontrast-Bewegungs-Illusion zeigten, fanden sie jedoch keinen Unterschied zum Verhalten von normalen Fliegen. „Das war ein wirklich überraschendes Ergebnis“, erinnert sich Armin Bahl. Die Wissenschaftler schlussfolgerten daraus, dass räumlicher Kontrast und Bewegungen in unterschiedlichen Gehirnregionen berechnet und verarbeitet werden. „Alles deutet darauf hin, dass das Fliegenhirn Gesehenes über verschiedene Nervenzellkanäle analysiert: Ein Kanal für Bewegungen, ein anderer Kanal für räumlichen Kontrast, und sicherlich weitere Kanäle für andere Merkmale der visuellen Umgebung“, fasst Armin Bahl zusammen. Auf die Frage, ob das auch beim Menschen so ist antwortet Alexander Borst „Sehr wahrscheinlich! Auch das visuelle System des Menschen ist hochgradig modular aufgebaut.“ Die vorliegende Arbeit über das Kontrast-Sehen der Fliege hilft somit zu verstehen, wie das Gehirn die verschiedenen Reize der Umwelt wahrnimmt und verarbeitet.

    ORIGINALVERÖFFENTLICHUNG:
    Armin Bahl, Etienne Serbe, Matthias Meier, Georg Ammer und Alexander Borst
    Neural mechanisms for Drosophila contrast vision
    Neuron, online am 3. November 2015

    KONTAKT:
    Dr. Stefanie Merker
    Presse- und Öffentlichkeitsarbeit
    Max-Planck-Institut für Neurobiologie, Martinsried
    Tel.: 089 8578 - 3514
    E-mail: merker@neuro.mpg.de

    Prof. Dr. Alexander Borst
    Abteilung Schaltkreise – Information – Modelle
    Max-Planck-Institut für Neurobiologie, Martinsried
    Tel.: 089 8578 - 3251
    Email: borst@neuro.mpg.de


    Weitere Informationen:

    http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
    http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Prof. Alexander Borst


    Bilder

    Mit Hilfe ausgeklügelter Verhaltensapparaturen entschlüsseln Neurobiologen die Wahrnehmung der Fruchtfliege und die zugrunde liegenden Nervenschaltkreise.
    Mit Hilfe ausgeklügelter Verhaltensapparaturen entschlüsseln Neurobiologen die Wahrnehmung der Fruch ...
    (c) MPI für Neurobiologie / Schorner
    None

    Der Balken dieser Kontrastillusion ist einheitlich grau, auch wenn es anders scheint. Ändert der Balken nun seine Helligkeit, sehen nicht nur Menschen sondern auch Fliegen eine Bewegungsillusion
    Der Balken dieser Kontrastillusion ist einheitlich grau, auch wenn es anders scheint. Ändert der Bal ...
    (c) MPI für Neurobiologie / Schorner
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Mit Hilfe ausgeklügelter Verhaltensapparaturen entschlüsseln Neurobiologen die Wahrnehmung der Fruchtfliege und die zugrunde liegenden Nervenschaltkreise.


    Zum Download

    x

    Der Balken dieser Kontrastillusion ist einheitlich grau, auch wenn es anders scheint. Ändert der Balken nun seine Helligkeit, sehen nicht nur Menschen sondern auch Fliegen eine Bewegungsillusion


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).