idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.02.2016 10:11

Extremereignisse im Gehirn

Johannes Seiler Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Physiker der Universitäten Bonn und Oldenburg haben ein Modell entwickelt, dessen Verhalten – obwohl es auf strengen Regeln basiert – sich scheinbar spontan ändern kann. Auch in der Natur kommt es häufig zu derartigen Wechseln, etwa bei der Entstehung von Migräne-Attacken oder epileptischen Anfällen. Der von den Forschern erstmalig beschriebene Mechanismus könnte dazu beitragen, Extremereignisse wie diese besser zu verstehen. Die Arbeit erscheint in Kürze im Fachmagazin Physical Review X, ist aber bereits online abrufbar.

    Über den Computer-Bildschirm ziehen unregelmäßige feuerrote Ringe. Sie vergrößern sich, verschmelzen miteinander, lösen sich auf, bilden Nachkommen – ein stetiger Kreislauf aus Entstehen und Vergehen. Doch plötzlich wird der Schirm dunkel; die Ringe sind verschwunden. Ein paar Sekunden lang tut sich nichts. Dann beginnt die dunkle Fläche zu pulsieren. Sie ändert rhythmisch ihre Farbe, kaum wahrnehmbar zunächst, doch dann immer deutlicher. Kurz darauf ein zweiter Wechsel: Die gesamte Fläche blitzt plötzlich rot auf. Schließlich erscheinen die Ringe wieder; das Extremereignis ist vorbei.

    So ähnlich könnte es im Gehirn aussehen, wenn sich eine Migräne-Attacke anbahnt oder ein epileptischer Anfall entsteht: Plötzlich geraten Milliarden von Neuronen zur selben Zeit in einen Ausnahmezustand. Die Regeln, denen sie normalerweise gehorchen, scheinen mit einem Mal außer Kraft gesetzt.

    Die Software, die in dem Büro der Klinik für Epileptologie am Bonner Universitätsklinikum ihre Ergebnisse auf den Computerschirm malt, zeigt ein ganz ähnliches Verhalten: Scheinbar aus dem Nichts heraus, in völlig unvorhersagbaren Abständen, wechselt das zugrunde liegende Modell seine Dynamik. Das Erstaunliche daran: Es gehorcht eigentlich einfachen Regeln, die dennoch so etwas wie Zufall erzeugen.

    Small-World-Effekte

    Das Modell ist ein Geflecht von vielen tausend Einzelelementen, den Knoten. Diese sind miteinander vernetzt – sie können also miteinander kommunizieren und einander beeinflussen. Sie sprechen dabei nicht nur mit ihren Nachbarn, sondern auch mit einigen weit abgelegenen Knoten. Wissenschaftler sprechen von einem „Small-World“-Netzwerk. Ganz ähnlich kommunizieren auch die Nervenzellen im Gehirn miteinander.

    Obwohl die Kommunikationsregeln genau festgelegt sind, zeigen derartige Netzwerke ein sehr komplexes Verhalten. Das liegt einerseits an der Vielzahl der Knoten, andererseits aber auch an der Verdrahtung dieser Knoten untereinander. „Wir konnten nun zeigen, dass sich das Verhalten derartiger Netzwerke spontan ändern kann“, erklärt Gerrit Ansmann, Erstautor der Arbeit und Doktorand in der Arbeitsgruppe Neurophysik. „Diese Wechsel erfolgen aber nur unter bestimmten Rahmenbedingungen“, erläutert Prof. Dr. Klaus Lehnertz, Leiter der Arbeitsgruppe. „Wir hoffen, mit unserem Modell besser verstehen zu können, unter welchen Bedingungen es im Gehirn zu Extremereignissen kommt.“

    Der Wechsel zwischen den einzelnen Aktivitätsmustern einschließlich der Entstehung und des Verschwindens von Extremereignissen basiert auf einem grundlegenden Mechanismus, der in ähnlicher Form auch für andere Systeme, wie zum Beispiel bei Erregungsmustern im Herz anwendbar ist. „Diese Allgemeingültigkeit ermöglicht vielfältige Anwendungen dieser Ergebnisse auch in anderen Wissenschaftsgebieten“, unterstreicht Prof. Dr. Ulrike Feudel, Leiterin der Arbeitsgruppe Theoretische Physik/Komplexe Systeme im Institut für Chemie und Biologie des Meeres der Universität Oldenburg.

    Die Arbeit entstand im Rahmen eines Projekts, das von der Volkswagen-Stiftung gefördert wird. Die Wissenschaftler untersuchen darin am Beispiel epileptischer Anfälle und schädlicher Algenblüten, durch welche Mechanismen Extremereignisse entstehen.

    Publikation: Gerrit Ansmann, Klaus Lehnertz und Ulrike Feudel: Self-induced switchings between multiple space–time patterns on complex networks of excitable units

    Kontakt für die Medien:

    Prof. Dr. Klaus Lehnertz
    Arbeitsgruppe Neurophysik
    Klinik für Epileptologie
    Universitätsklinikum Bonn
    Tel. 0228/28715864
    E-Mail: Klaus.Lehnertz@ukb.uni-bonn.de

    Prof. Dr. Ulrike Feudel
    Arbeitsgruppe Theoretische Physik/Komplexe Systeme
    Institut für Chemie und Biologie des Meeres
    Universität Oldenburg
    Telefon: 0441/7982790
    E-Mail: ulrike.feudel@uni-oldenburg.de


    Weitere Informationen:

    http://arxiv.org/pdf/1602.02177 Publikation online


    Bilder

    Chaotischer Sattel,  der das Verhalten des in Bonn und Oldenburg entwickelten Modells beschreibt. Man kann sich ihn vereinfacht als gebogenen Pferdesattel vorstellen, auf dem eine Kugel entlangrollt.
    Chaotischer Sattel, der das Verhalten des in Bonn und Oldenburg entwickelten Modells beschreibt. Ma ...
    (c) Grafik: AG Neurophysik/Uniklinik für Epileptologie Bonn
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Chaotischer Sattel, der das Verhalten des in Bonn und Oldenburg entwickelten Modells beschreibt. Man kann sich ihn vereinfacht als gebogenen Pferdesattel vorstellen, auf dem eine Kugel entlangrollt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).