idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.03.2016 10:54

Stammzellforschung - Der Faktor zum Überleben

Luise Dirscherl Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Nervenzellen lassen sich nach Gehirnverletzungen bisher nicht ersetzen. Münchner Forschern können jetzt aber Gliazellen in Neurone umprogrammieren, die Methode ist verblüffend einfach und viel effektiver als bisherige Versuche.

    Die Bildung von Nervenzellen (Neurogenese) im Gehirn ist beim Menschen überwiegend auf die Entwicklungsphase beschränkt und findet im Erwachsenenstadium nur noch in sehr wenigen Regionen des Vorderhirns statt. Daher kann der Körper nach Gehirnverletzungen, etwa durch ein Trauma, abgestorbene Nervenzellen nicht mehr ersetzen. Mit dem Ansatz, neue Nervenzellen aus Gliazellen, eigentlich Stützzellen des Hirngewebes, herzustellen, arbeitet Professor Magdalena Götz, Lehrstuhlinhaberin des Instituts Physiologische Genomik am Biomedizinischen Centrum der LMU und Direktorin des Instituts für Stammzellforschung am Helmholtz Zentrum München, bereits seit Jahren. Erstmals gelang ihr eine solche Umwandlung in vivo in begrenztem Umfang im Jahre 2005. Es entstanden nur sehr wenige, noch unreife Neurone, und viele von ihnen starben im Verlauf der ersten Wochen ab. Mit einer neuen Methode gelang es ihr und ihrem Team nun, die behandelten Gliazellen nahezu vollständig in Nervenzellen umzuwandeln, die über lange Wochen lebensfähig waren. Dafür mussten die Münchner Wissenschaftler nur einen bestimmten Faktor hinzufügen, der die Umwandlung in Neurone veranlasst, und eine weitere Substanz, die das Überleben der Zellen fördert und den oxidativen Stress blockiert. Von ihren Experimenten berichten die Forscher im renommierten Fachjournal Cell Stem Cell.

    Zunächst hatte die Gruppe die Umwandlung von Gliazellen in Nervenzellen in Zellkultur untersucht, und festgestellt, dass sehr viele Zellen bei diesem Vorgang sterben. In Zusammenarbeit mit der Arbeitsgruppe von Dr. Marcus Conrad (Helmholtz Zentrum München und Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE) entdeckten die Wissenschaftler zu ihrer Überraschung, dass nur die Neurone, nicht aber die Gliazellen einen besonderen Zelltod sterben, nämlich den Tod der ‚Ferroptosis’. Dieser beruht auf einem Übermaß an reaktivem Sauerstoff in der Zelle, das entsteht, wenn sich Gliazellen zu schnell auf den Stoffwechsel der Nervenzellen umstellen. Die Zellen produzieren sehr viele reaktive Sauerstoffmoleküle, ihnen fehlen aber noch die entsprechenden Schutzmechanismen.

    Schutz vor oxidativem Stress

    In vivo zeigen sich diese völlig neuen Befunde aus der Zellkultur mit einem noch dramatischeren Effekt. Wenn Gliazellen nach traumatischer Gehirnverletzung nur mit einem Faktor, der die Bildung von Nervenzellen veranlasst, transduziert werden, wandeln sich nur etwa zehn Prozent aller Gliazellen in Nervenzellen um. Werden sie aber zusätzlich mit dem Protein Bcl-2 vor dem Zelltod geschützt, sind es rund 80 Prozent. Bekommen die Zellen außerdem noch Vitamin E als Schutz vor oxidativem Stress, erreicht man fast hundert Prozent, und die umgewandelten Nervenzellen zeigen einen erstaunlichen Reifegrad. „Unsere Ergebnisse revolutionieren den innovativen Ansatz, aus Gliazellen nach Gehirnverletzung Nervenzellen zu machen und so abgestorbene Nervenzellen auch wieder ersetzen zu können“, sagt Erstautor Sergio Gascón.

    Ansätze zu neuen Therapien gegen Erkrankungen des Gehirns wie zum Beispiel Schlaganfall oder Demenzerkrankungen konzentrieren sich vor allem darauf, untergegangene Nervenzellen zu ersetzen. Stammzellen sind aber kaum noch vorhanden im menschlichen Gehirn. „Daher erlaubt der Ansatz, neue Nervenzellen aus Gliazellen herzustellen, auch Gehirnregionen zu reparieren, die weit weg von Stammzellnischen sind“, betont Magdalena Götz. „Zum ersten Mal haben wir jetzt nicht nur viele, sondern auch richtig reife Nervenzellen erzeugen können. Nun können wir deren Verknüpfungen mit den verbliebenen Nervenzellen untersuchen – um festzustellen, ob sie sich auch richtig in das Nervenzellnetzwerk integrieren.“
    LMU/Helmholtz-Zentrum München

    Publikation:
    Gascón, Sergio; Murenu, Elisa et al.:
    Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming.
    Cell Stem Cell, März 2016

    Ansprechpartner:
    Prof. Dr. Magdalena Götz
    Helmholtz Zentrum München
    Institut für Stammzellforschung
    Tel.: 089-3187-3750
    E-Mail: magdalena.goetz@helmholtz-muenchen.de
    und
    Biomedizinisches Centrum der LMU
    Physiologische Genomik
    Tel.: 089-2180-75255


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).