idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.06.2003 13:57

Testen - noch vor der Laborproduktion

Josef Zens Unternehmenskommunikaton des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

    Testen - noch vor der Laborproduktion
    Simulationsprogramm aus dem Weierstraß-Institut modelliert Halbleiterbauelemente
    Die Miniaturisierung der Elektronikbauteile geht ungebremst weiter. Immer kleiner werden die Chips mit ihren Schaltelementen und Leitbahnen, die winzigen Sender und Empfänger für Informationen. Daher müssen die Entwickler solcher Elemente zunehmend auf die Kunst der Mathematiker und Modellierer zurückgreifen, wenn sie Bauteile neu entwerfen oder optimieren. Am Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) in Berlin hat sich eine Arbeitsgruppe auf solche Fragestellungen spezialisiert. Es geht um die Berechnung von Halbleiterbauelementen. Um solche Teile zu produzieren, ist ein technologischer Prozess nötig, der Tage bis Wochen dauert. "Das kann bis zu zweihundert einzelne Arbeitsschritte umfassen", sagt Dr. Reiner Nürnberg vom WIAS. Zur Fertigung gehören Strukturierungs-, Beschichtungs- und Dotierungsprozesse.
    Noch bevor also die komplizierten Fertigungsanlagen anlaufen - und die teuren Versuchschargen eingespeist werden -, simulieren die WIAS-Experten die Funktionsweise des neuen Bauelements. Ihr Programm dafür heißt WIAS-TeSCA. Es dient dazu, das Verhalten der Elemente während des Betriebs vorherzusagen: Welche Ströme fließen? Welche Wärme entsteht im Innern? Wie reagiert es auf Strahlen? Die Wissenschaftler greifen dabei auf ein mehr als zwanzigjähriges Know-how zurück.
    Dieses Wissen hat sich unter anderem in WIAS-TeSCA niedergeschlagen. Der Name steht für "Two and three dimensional Semi-Conductor Analysis". Zu dem als 2D-Simulator entwickelten Programm sind in den letzten Jahren zahlreiche Komponenten neu hinzugekommen. Die dritte Raumdimension ist dabei nur ein Teil der Überarbeitung. Man kann von einer dreifachen Erweiterung sprechen. Nürnberg: "Erstens haben wir zusätzliche Gleichungen integriert, die Wärme, Licht und mechanische Bauteilveränderungen abbilden. Zweitens haben wir neue nichtlineare Modelle berücksichtigt. Und dann eben die dritte Dimension."
    Was bedeutet das im Einzelnen? Wärme zum Beispiel ist immer eine Begleiterscheinung in der Halbleiterelektronik. Chips oder Laserdioden können während des Betriebs heiß werden. Diese lokale Wärmeentwicklung wirkt auf die elektronischen Eigenschaften zurück. Generationsraten und Beweglichkeiten ändern sich stark mit der Temperatur. Und das kann den normalen Betrieb eines Bauelements beeinträchtigen und gefährden, schon lange bevor es mechanisch zerstört wird.
    Manche Effekte sind erwünscht, gehören also zur Funktion. Auch sie müssen berechnet werden. Etwa die Wirkung von Lichtteilchen, die auf die hochempfindlichen Oberflächen treffen. Diese nutzt man in optoelektronischen Sensoren. Die Geräte sind dann so empfindlich, dass sie ein einzelnes Photon registrieren können, weil das auftreffende Lichtteilchen eine ganze Kaskade von Reaktionen auslöst (das Prinzip ist nach dem englischen Wort für Lawine benannt: Avalanche). Auch bei Avalanche-Detektoren spielt wiederum Wärme eine Rolle.
    WIAS-TeSCA simuliert nicht jedes einzelne Elektron in einem Bauelement, sondern geht von einer "Teilchenwolke" aus. "Dabei stoßen wir aber jetzt schon an Grenzen", berichtet Nürnberg, "denn Quanteneffekte lassen sich nicht mehr mit solchen Vereinfachungen berechnen." Ein Gleichungssystem mit hunderttausend Unbekannten muss das Programm schon im 2D-Fall lösen, um ein Bauelement zu simulieren. In der dritten Dimension ist man rasch bei Millionen von Variablen angelangt.
    "Es ist aber unabdingbar, dass wir die Simulationsergebnisse mit Daten aus Experimenten vergleichen", sagt Nürnberg. Daher ist die Zusammenarbeit mit anderen Forschungsinstituten sehr wichtig. Ganz eng kooperiert das WIAS zum Beispiel mit dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH), welches das Programm WIAS-TeSCA bei der Entwicklung von Laserdioden einsetzt. Beide Institute sind Teil des Forschungsverbundes Berlin. Über Lizenzgebühren ist das Mathematik-Institut dabei auch an Einnahmen aus Forschungsaufträgen der Industrie beteiligt.
    Simulationsprogramme sind in der Elektronikbranche längst Standard. Was zeichnet WIAS-TeSCA nun aus? Die Numerik ist sehr leistungsfähig. Das heißt, die Gleichungen bilden die Wirklichkeit besonders gut ab und der Rechner spuckt rasch eine Lösung aus. Die WIAS-Entwickler betonen: "Unser Programm arbeitet stabil und bietet auch dann eine Chance auf Erfolg, wenn kommerzielle Software-Produkte an ihre Grenzen stoßen." Außerdem zeichnet WIAS-TeSCA eine hohe Flexibilität aus. Zum Angebot gehören schnelles Reagieren auf Kundenwünsche, der Einbau spezifischer Modelle, die gemeinsame Lösungssuche und schließlich auch die Ausführung von Auftragsrechnungen. WIAS-TeSCA ist also leistungsfähig und aktuell. Nah an der Forschung dran. "Und am Anwender", fügt Nürnberg hinzu. "Der fast tägliche Kontakt mit den Nutzern gibt uns die entscheidenden Impulse zur Weiterentwicklung."

    Ansprechpartner: Dr. Reiner Nürnberg; Tel. 030 / 2 03 72-570; nuernberg@wias-berlin.de

    Das Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) führt Forschungsprojekte in den Anwendungsgebieten der Mathematik durch. Es nimmt konkrete Fragestellungen aus Natur- und Ingenieurwissenschaften, Medizin und Wirtschaft auf. Die angebotenen Problemlösungen reichen von der interdisziplinären Modellierung über die mathematische Behandlung des Modells bis zur konkreten numerischen Simulation und Bereitstellung der Software. Erforderliche theoretische Untersuchungen werden im Rahmen der Grundlagenforschung weiter bearbeitet. Erfolgreich umgesetzt wird dieses Konzept in einer Reihe von Praxisfeldern, darunter der Halbleitertechnologie, der Nano- und Optoelektronik, bei Phasenumwandlungen sowie im Risikomanagement von Banken und Versicherungen. Das WIAS gehört zum Forschungsverbund Berlin e.V. (FVB).

    Der Forschungsverbund Berlin e. V. vereint acht natur-, lebens- und umweltwissenschaftliche Forschungsinstitute. Alle sind wissenschaftlich eigenständig, haben sich aber zur Wahrnehmung gemeinsamer Interessen zusammengeschlossen und verfügen über eine gemeinsame Verwaltung. Alle Institute des FVB gehören der Leibniz-Gemeinschaft an. Weitere Informationen:
    http://www.wias-berlin.de
    http://www.fv-berlin.de
    http://www.leibniz-gemeinschaft.de

    Dieser Text ist auch im neuen Verbundjournal erschienen, dem Magazin des Forschungsverbundes Berlin e.V. Er ist außerdem von den Internet-Seiten des Forschungsverbundes Berlin herunterzuladen: http://www.fv-berlin.de (Pressemitteilungen). Das Journal im Netz: http://www.fv-berlin.de/zeitung/verbund54.pdf


    Weitere Informationen:

    http://www.wias-berlin.de
    http://www.fv-berlin.de
    http://www.fv-berlin.de/zeitung/verbund54.pdf
    http://www.leibniz-gemeinschaft.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Elektrotechnik, Energie, Informationstechnik, Maschinenbau, Mathematik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).