1.5°C vs 2°C global warming: new study shows why half a degree matters

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
21.04.2016 14:00

1.5°C vs 2°C global warming: new study shows why half a degree matters

Dr. Bárbara Ferreira EGU Executive Office
European Geosciences Union

    European researchers have found substantially different climate change impacts for a global warming of 1.5°C and 2°C by 2100, the two temperature limits included in the Paris climate agreement. The additional 0.5°C would mean a 10-cm-higher global sea-level rise by 2100, longer heat waves, and would result in virtually all tropical coral reefs being at risk. The research is published today (21 April) in Earth System Dynamics, an open access journal of the European Geosciences Union, and is presented at the EGU General Assembly.

    “We found significant differences for all the impacts we considered,” says the study’s lead author Carl Schleussner, a scientific advisor at Climate Analytics in Germany. “We analysed the climate models used in the [Intergovernmental Panel on Climate Change (IPCC)] Fifth Assessment Report, focusing on the projected impacts at 1.5°C and 2°C warming at the regional level. We considered 11 different indicators including extreme weather events, water availability, crop yields, coral reef degradation and sea-level rise.”

    The team, with researchers from Germany, Switzerland, Austria and the Netherlands, identified a number of hotspots around the globe where projected climate impacts at 2°C are significantly more severe than at 1.5°C. One of these is the Mediterranean region, which is already suffering from climate change-induced drying. With a global temperature increase of 1.5°C, the availability of fresh water in the region would be about 10% lower than in the late 20th century. In a 2°C world, the researchers project this reduction to double to about 20%.

    In tropical regions, the half-a-degree difference in global temperature could have detrimental consequences for crop yields, particularly in Central America and West Africa. On average, local tropical maize and wheat yields would reduce twice as much at 2°C compared to a 1.5°C temperature increase.

    Tropical regions would bear the brunt of the impacts of an additional 0.5°C of global warming by the end of the century, with warm spells lasting up to 50% longer in a 2°C world than at 1.5°C. “For heat-related extremes, the additional 0.5°C increase marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions,” explains Schleussner.

    The additional warming would also affect tropical coral reefs. Limiting warming to 1.5°C would provide a window of opportunity for some tropical coral reefs to adapt to climate change. In contrast, a 2°C temperature increase by 2100 would put virtually all of these ecosystems at risk of severe degradation due to coral bleaching.

    On a global scale, the researchers anticipate sea level to rise about 50 cm by 2100 in a 2°C warmer world, 10 cm more than for 1.5°C warming. “Sea level rise will slow down during the 21st century only under a 1.5°C scenario,” explains Schleussner.

    Co-author Jacob Schewe, of the Potsdam Institute for Climate Impact Research in Germany, says: “Some researchers have argued that there is little difference in climate change impacts between 1.5°C and 2°C. Indeed, it is necessary to account for natural variability, model uncertainties, and other factors that can obscure the picture. We did that in our study, and by focusing on key indicators at the regional level, we clearly show that there are significant differences in impacts between 1.5°C and 2°C.”

    William Hare, a senior scientist and CEO at Climate Analytics who also took part in the Earth System Dynamics research, adds: “Our study shows that tropical regions – mostly developing countries that are already highly vulnerable to climate change – face the biggest rise in impacts between 1.5°C and 2°C.”

    “Our results add to a growing body of evidence showing that climate risks occur at lower levels than previously thought. It provides scientific evidence to support the call by vulnerable countries, such as the Least Developed Countries and Small Island Developing States, that a 1.5°C warming limit would substantially reduce the impacts of climate change,” says Hare.

    # # #

    Please mention the name of the publication (Earth System Dynamics) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.earth-system-dynamics.net/).

    See HTML version of this release, including accompanying images and the scientific study, at: http://www.egu.eu/news/230/15c-vs-2c-global-warming-new-study-shows-why-half-a-d....

    INFORMATION FOR EDITORS

    This research is presented in the paper ‘Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C’ to appear in the EGU open access journal Earth System Dynamics on 21 April 2016. On the same day, the results will also be presented at the EGU General Assembly in Vienna.

    The scientific article is available online, free of charge, from the publication date onwards, at http://www.earth-syst-dynam-discuss.net/esd-2015-68/ (this URL currently links to the non-peer-reviewed version of the paper, but will redirect to the page of the final, peer-reviewed paper after it is published). A pre-print version of the final paper is available for download at http://www.egu.eu/news/230/15c-vs-2c-global-warming-new-study-shows-why-half-a-d....

    Citation: TBA

    The team is composed of Carl-Friedrich Schleussner (Climate Analytics, Berlin, Germany [CA] and Potsdam Institute for Climate Impact Research, Potsdam, Germany [PIK]), Tabea K. Lissner (CA and PIK), Erich M. Fischer (Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland [ETH]), Jan Wohland (PIK), Mahé Perrette (PIK), Antonius Golly (GFZ German Research Centre for Geosciences, Potsdam, Germany and University of Potsdam), Joeri Rogelj (ETH and International Institute for Applied Systems Analysis, Laxenburg, Austria), Katelin Childers (PIK), Jacob Schewe (PIK), Katja Frieler (PIK), Matthias Mengel (CA and PIK), William Hare (CA and PIK), and Michiel Schaeffer (CA and Wageningen University and Research Centre, Wageningen, The Netherlands).

    ABOUT EGU

    The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2016 General Assembly is taking place in Vienna, Austria, from 17 to 22 April 2016. For information about meeting and press registration, please check http://media.egu.eu or follow the EGU on Twitter and Facebook.

    If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

    ABOUT THE JOURNAL

    Earth System Dynamics (ESD) is an international scientific journal dedicated to the publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change. The overall behaviour of the Earth system is strongly shaped by the interactions among its various component systems, such as the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the inner Earth, but also by life and human activity. ESD solicits contributions that investigate these various interactions and the underlying mechanisms, ways how these can be conceptualized, modelled, and quantified, predictions of the overall system behaviour to global changes, and the impacts for its habitability, humanity, and future Earth system management by human decision making.

    CONTACTS

    Carl-Friedrich Schleussner
    Scientific Advisor at Climate Analytics
    Berlin, Germany
    Phone: +49-30-259-22-95-41
    Email: carl.schleussner@climateanalytics.org

    Jacob Schewe
    Researcher at Potsdam Institute for Climate Impact Research
    Potsdam, Germany
    Phone: jacob.schewe@pik-potsdam.de
    Email: +49-331-288-2421

    William L. Hare
    CEO and Managing Director / Senior Scientist at Climate Analytics
    Berlin, Germany
    Phone: +49-30-259-22-95-25 -or- +49-160-908-62463
    Email: bill.hare@climateanalytics.org

    Michiel Schaeffer
    Director / Senior Scientist at Climate Analytics
    Email: michiel.schaeffer@climateanalytics.org

    Bárbara Ferreira
    EGU Media and Communications Manager
    Munich, Germany
    Phone: +49-89-2180-6703
    Email: media@egu.eu
    EGU on Twitter: @EuroGeosciences


    Weitere Informationen:

    http://Scientific paper: TBA
    http://www.earth-system-dynamics.net/: Journal – Earth System Dynamics
    http://www.egu106.eu/ (general EGU General Assembly website); http://media.egu.eu (media website)
    http://media.egu.eu/press-conferences/#COP21: press conference at the EGU 2016 General Assembly where the results will be presented
    http://www.egu.eu/news/230/15c-vs-2c-global-warming-new-study-shows-why-half-a-d...


    Merkmale dieser Pressemitteilung:
    Journalisten
    Geowissenschaften, Meer / Klima, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Tagungen
    Englisch


    Evidence of coral bleaching around Tioman Island, Malaysia. This image is licensed under a Creative Commons Attribution-ShareAlike licence.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay