idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.04.2016 12:34

Optimized laser pulses drill narrower and deeper holes

Sebastian Mense Kommunikation, Presse- und Öffentlichkeitsarbeit
Universität Kassel

    By optimizing the temporal structure of ultrashort laser pulses German scientists achieved high-aspect ratio nano-machining of fused silica. At the optical wavelength of 800 nanometers holes only 250 na-nometers wide but up to seven micrometers deep were demonstrated.

    Nanotechnology is at the forefront of today’s advance in areas such as electronics, optical communica-tion and biomedicine. It is about custom-designed structures that are smaller than a micrometer which is already a hundredth of the diameter of a human hair. These so-called nanostructures exhibit proper-ties unknown from larger specimen of the same material. Fabrication of such systems is still a challenge with many different techniques available.

    A direct approach to write the desired structures on a substrate is to remove unwanted material by evap-oration in an intense laser field. However, there are severe limitations. First of all, intense lasers interact mostly with the surface of most materials. Additionally, the minimum spot size and, consequently, the smallest structure written by a laser beam is given by the wavelength of the radiation. For visible light this is 400 to 800 nanometers which today is above the size of some electronic components.

    Physicists and electrical engineers of the Center for Interdisciplinary Nanostructure Science and Tech-nology (CINSaT) at the University of Kassel in Germany now demonstrated the creation of sub-focal nano-holes in fused silica with a diameter below 250 nanometers at a wavelength of 800 nanometers. At the same times these holes reach up to seven micrometers deep into the glass providing an aspect ratio that is otherwise difficult to achieve on such small structures.

    The team led by Thomas Baumert and Hartmut Hillmer uses laser pulses that are only around one part in a trillion seconds short. But this alone does not do the trick. Using a home-built pulse shaping tech-nique they create optimized sequences of light – so-called temporal Airy pulses (see image) – that are structured such that they efficiently excite the material. This efficient excitation is not instantaneous but a delayed, avalanche-like process. Consequently, the laser pulses are not the shor-test possible ones but stretched to optimal length. The delayed ionization mechanism also circumvents the above-mentioned problem that most of the pulse is absorbed at the surface of the material. Instead excitation is carried into the material, leading to deep and narrow channels. Carefully adjusting the pulse sequence enables to change the depth of the created holes, but also the size of the focal spot and its position with respect to the surface are important control parameters. Interestingly, the approach does not use ex-tremely high laser powers, where non-linear effects such as self-focusing could explain the observed spatial narrowing of the material modification.

    The scientists in Kassel are currently testing the technique for the production of miniaturized filters in optical communications. Other possible applications are nano-surgery and cell poration.

    Link to the original publication:
    http://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-4-389

    See image under:
    http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2016/Figure_1_d...

    Caption: Illustration of the initially bandwidth-limited laser pulses that are shaped into temporal Airy pulses and then focused onto a fused silica sample. An example cross section of a deep nano-hole cre-ated with a single laser shot is shown on the lower right of the figure. Image: Uni Kassel.

    Contact:
    Prof. Dr. Thomas Baumert
    Universität Kassel
    Tel. +49-561-804-4452
    E-Mail: baumert@physik.uni-kassel.de

    Prof. Dr. Hartmut Hillmer
    Institut für Nanostruktur und Analyse
    Universität Kassel
    Tel. +49-561-804-4485
    E-Mail: hillmer@ina.uni-kassel.de


    Weitere Informationen:

    http://www.uni-kassel.de/uni/internationales/english-version/university/about-us...


    Bilder

    Illustration of the initially bandwidth-limited laser pulses that are shaped into temporal Airy pulses and then focused onto a fused silica sample.
    Illustration of the initially bandwidth-limited laser pulses that are shaped into temporal Airy puls ...
    Image: Uni Kassel.
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Illustration of the initially bandwidth-limited laser pulses that are shaped into temporal Airy pulses and then focused onto a fused silica sample.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).