idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.04.2016 09:51

Die Chemie macht‘s!

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

    Jülich / Dortmund / Münster, 27. April 2016 – In Geräten der Zukunft könnten molekulare Magnete als Computerbits dienen. Damit ließen sich extrem hohe Datendichten erreichen. In der Physik, Chemie und den Materialwissenschaften stehen deshalb die magnetischen Eigenschaften von komplexen Molekülen im Fokus intensiver Forschungsanstrengungen. Denn lassen sich diese genau bestimmen und vorhersagen, wäre ein großer Schritt in Richtung möglicher Anwendungen getan, zum Beispiel für spinbasierte Datenspeicherung. Ein Team von Wissenschaftlern untersuchte die Spin-Wechselwirkungen in molekularen Magneten – und stellte fest, dass diese direkt von chemischen Wechselwirkungen beeinflusst werden.

    Die Forscher untersuchten in ihrer Studie eine bestimmte Art von Molekül: PTCDA besteht aus Kohlenstoff-, Wasserstoff- und Sauerstoffatomen, die gemeinsam sieben zusammenhängende Ringe bilden. Das Molekül wird oft als Modellsystem benutzt. "Bindet man an PTCDA ein Goldatom, dann wird das äußere Elektron dieses Atoms in das Molekül übertragen. Dessen Spin bestimmt dann die magnetischen Eigenschaften des ganzen Systems", erklärt Stefan Tautz vom Jülicher Peter Grünberg Institut. "Der Spin dieses Elektrons breitet sich gewissermaßen über das gesamte Molekül aus und macht es damit zu einer besonderen Art von molekularen Magneten."

    Solche Metall-Molekül-Komplexe – sogenannte Monomere – werden in Jülich bereits seit einigen Jahren erforscht. In dieser Studie jedoch konzentrierten sich die Wissenschaftler auf Dimere: Molekülverbände aus zwei Monomeren. Die Eigenschaften solcher Dimere hängen ab von der Ausrichtung der beiden Monomere zueinander. Die Forscher erhielten so eine große Anzahl an unterschiedlichen Kombinationen von zwei molekularen Magneten, deren Spin-Wechselwirkungen sie mit experimentellen und theoretischen Methoden untersuchten.

    Feinste Justierungen der magnetischen Eigenschaften

    Dafür vermaßen sie mithilfe der Rastertunnelspektroskopie die Reaktion der Dimere, wenn man einzelne Elektronen hinzufügte oder entfernte – mit überraschenden Ergebnissen. Die Struktur der Spektren war nicht, wie erwartet, vom relativen Abstand der Goldatome in den beiden Monomeren abhängig. Dies legte nahe, dass die magnetischen Eigenschaften nicht allein durch quantenmechanische Wechselwirkungen beeinflusst wurden.

    Dortmunder Wissenschaftler entwickelten ein quantenphysikalisches Modell, mit dem sich diese Ergebnisse erklären ließen: Die chemische Struktur der Dimere beeinflusst ihre magnetischen Eigenschaften. "Falls zwei PTCDA-Gold-Komplexe nebeneinander liegen, können sich ihre magnetischen Eigenschaften durch die Dimerbildung massiv ändern", erklärt Frithjof Anders von der Technischen Universität Dortmund. "Entweder stellen sich die Elektronspins parallel ein und erzeugen damit eine Verdoppelung des magnetischen Moments, oder sie stehen anti-parallel und bilden einen nicht-magnetischen Zustand, was zu den überraschenden Ergebnissen führt, die in Jülich gemessen wurden."

    Damit lassen sich die komplexen Spin-Wechselwirkungen, die normalerweise aufgrund ihrer quantenmechanischen Natur sehr schwer beeinflussbar sind, über die chemische Wechselwirkung gewissermaßen maßschneidern. Doch mögliche zukünftige Anwendungen in der Spintronik sind nicht der wichtigste Erfolg, den die Wissenschaftler verzeichnen konnten: "Es ist uns hier gelungen, in der sehr komplexen Welt der Spin-Phänomene eine neue Art von Verhalten zu entdecken", erklärt Tautz.

    Zwei theoretische Methoden kombiniert

    Magnetische Phänomene dieser Art sind außerordentlich schwer theoretisch zu beschreiben und zu berechnen. Deswegen werden oft vereinfachte Modelle angenommen, die dann an die experimentellen Daten angepasst werden. In diesem Fall benutzten die Forscher jedoch sogenannte "ab initio"-Methoden als Ausgangspunkt für ihre Berechnungen. Diese werden ohne die Ergebnisse der entsprechenden Messung durchgeführt. "Mit Hilfe der ab-initio Elektronenstrukturtheorie lassen sich chemische Bindungen und Details der elektronischen Struktur mit subatomarer Präzision bestimmen", erläutert Michael Rohlfing von der Universität Münster, dessen Arbeitsgruppe die Berechnungen durchführte. In diesen konnten auch die Parameter vollständig bestimmt werden, die die magnetischen Eigenschaften kontrollieren. Diese Ergebnisse ermöglichten dann den Dortmunder Wissenschaftlern, das magnetische Verhalten der verschiedenen Dimer-Konfigurationen auszuwerten – in vollkommener Übereinstimmung mit den in Jülich gemessenen Daten.

    Originalveröffentlichung:

    T. Esat, B. Lechtenberg, T. Deilmann, C. Wagner, P. Krüger, R. Temirov, M. Rohlfing, F. Anders, F. Tautz, A chemically driven quantum phase transition in a two-molecule Kondo system, Nature Physics, DOI: 10.1038/nphys3737

    Bild:
    Rastertunnelmikroskop-Aufnahmen: Oben: Geschlossene Schicht von PTCDA-Molekülen, mit mehreren PTCDA-Gold-Monomeren (Gelb). Liegen zwei dieser Monomere nebeneinander, sprechen die Wissenschaftler von einem Dimer. Abhängig von der Position der angelagerten Goldatome im PCTDA und der relativen Ausrichtung der Monomere, können sich 32 Unterarten eines solchen Dimers bilden.
    Unten: Vergrößerte Aufnahmen von drei verschiedenen PTCDA-Gold-Dimeren, überlagert mit Bildern der jeweiligen Molekülstruktur.
    Copyright: Forschungszentrum Jülich

    Ansprechpartner:

    Prof. Dr. Stefan Tautz
    Forschungszentrum Jülich
    Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
    Tel.: +49 2461 61-4561
    E-Mail: s.tautz@fz-juelich.de

    Prof. Dr. Frithjof Anders
    Technische Universität Dortmund
    Lehrstuhl für Theoretische Physik II
    Tel.: +49 231 755-7958
    Email: frithjof.anders@tu-dortmund.de

    Prof. Dr. Michael Rohlfing
    Westfälische Wilhelms-Universität Münster
    Institut für Festkörpertheorie
    Tel.: +49 251 83-36340
    Email: michael.rohlfing@uni-muenster.de

    Pressekontakt:

    Dr. Regine Panknin
    Unternehmenskommunikation
    Tel.: +49 2461 61-9054
    Email: r.panknin@fz-juelich.de


    Weitere Informationen:

    http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html - Peter Grünberg Institut, Bereich Functional Nanostructures at Surfaces (PGI-3)
    http://t2.physik.tu-dortmund.de/cms/de/home/ - Technische Universität Dortmund, Lehrstuhl Theoretische Physik II
    https://www.uni-muenster.de/Physik.FT/ - Westfälische Wilhelms-Universität Münster, Institut für Festkörpertheorie


    Bilder

    Oben: Rastertunnelmikroskop-Aufnahmen von PTCDA-Gold-Komplexen
    Oben: Rastertunnelmikroskop-Aufnahmen von PTCDA-Gold-Komplexen
    Quelle: Copyright: Forschungszentrum Jülich


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Chemie, Elektrotechnik, Informationstechnik, Physik / Astronomie
    überregional
    Buntes aus der Wissenschaft, Forschungsergebnisse
    Deutsch


     

    Oben: Rastertunnelmikroskop-Aufnahmen von PTCDA-Gold-Komplexen


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).