idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.05.2016 09:52

Elektronische Mikro-Labore steuern chemische Prozesse von innen

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Chemiker der Ruhr-Universität Bochum haben gemeinsam mit Projektpartnern winzige elektronische Einheiten entwickelt, die chemische Prozesse von innen kontrollieren können. Die Mikro-Labore haben eine Kantenlänge von gerade einmal 140 Mikrometern. Über Spannungssignale können sie verschiedene chemische Reaktionen in wässriger Lösung dirigieren und ihre Umwelt wahrnehmen. Sie besitzen eine autonome Stromversorgung und arbeiten somit autark. Eines Tages sollen sie auch zur Evolution fähig sein. Die Forschung findet statt im Rahmen des EU-Projekts „Microscopic Chemically Reactive Electronic Agents“.

    Autonome Mikro-Labore, so groß wie Zellen, die den menschlichen Körper von innen überwachen – noch ist das Fiktion. Aber einige grundlegende Schritte sind gemacht.

    Als Labore auf einem Chip bezeichnet Prof. Dr. John McCaskill von der Ruhr-Universität Bochum die winzigen elektronischen Bauteile, die er gemeinsam mit zahlreichen Partnern in den vergangenen Jahren entwickelt hat. Der Forscher der Fakultät für Chemie und Biochemie leitet das EU-Projekt „Microscopic Chemically Reactive Electronic Agents“.

    Ziel des internationalen Teams ist es, chemische Reaktionen nicht mit großen Interface-Strukturen von außen zu steuern, sondern die Prozesse von innen heraus elektronisch zu kontrollieren. „Man muss sich nur vorstellen, was ein Chemiker alles machen könnte, wenn er so klein wie eine Zelle wäre“, sagt McCaskill.

    Elektroden steuern Chemie über Spannungssignale

    Die im Projekt konzipierten Mikro-Labore, auch Lablets genannt, sind derzeit gerade einmal 140 mal 140 mal 60 Mikrometer groß. Sie können verschiedene chemische Reaktionen in wässriger Lösung steuern oder Informationen aus ihrer Umgebung aufnehmen. Für diesen Zweck besitzen sie winzige Elektroden.

    Eine Spannung, die an der Elektrode anliegt, kann die Energie liefern, die es braucht, um eine chemische Reaktion in Gang zu setzen. Unterschiedliche Spannungen starten unterschiedliche Reaktionen – welche hängt unter anderem von den in der Umgebung verfügbaren Molekülen ab.

    Für die Mikro-Labore haben die Forscher einen Super-Kondensator entwickelt, der aktuell 20 Minuten lang eine autarke Stromversorgung ermöglicht. Zum Aufladen und zwecks Programmierung müssen die Lablets derzeit an eine smarte Oberfläche binden.

    Mikro-Labore sollen zur Evolution fähig sein

    Bei der Konzeption der Lablets haben sich die Chemiker das ein oder andere von der Natur abgeschaut. Prinzipiell sind sie so angelegt, dass sie ihre Programmierung auf andere Einheiten übertragen können, indem sie eine Sequenz von Spannungssignalen weitergeben. Eines Tages sollen sich die Lablets selbstständig zu Paaren zusammenfinden können und fähig zur Evolution sein.

    Mit Hochdruck arbeitet das Projektteam nun daran, alle entwickelten Funktionen in einem einzigen Mikro-Labor zu integrieren.

    Ausführlicher Beitrag mit Bildern im Wissenschaftsmagazin Rubin

    Das Wissenschaftsmagazin Rubin der Ruhr-Universität Bochum berichtet über die bislang erzielten Erfolge des Projekts http://rubin.rub.de/de/mikro-labore. Texte auf der Webseite und Bilder aus dem Downloadbereich dürfen unter Angabe des Copyrights für redaktionelle Zwecke frei verwendet werden.

    Themenschwerpunkt: Wenn Science-Fiction und Forschung verschmelzen

    Der Beitrag über die Forschung von John McCaskill ist Teil des aktuellen Rubin-Schwerpunkts „Wenn Science-Fiction und Forschung verschmelzen“ (http://rubin.rub.de/de/themenschwerpunkt-wenn-science-fiction-und-forschung-vers...), mit dem die Frühjahrsausgabe des Magazins erschienen ist.

    Pressekontakt

    Prof. Dr. John McCaskill, Microsystems Chemistry and Biomolecular Information Technology, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Tel.: 0234/32 27702, E-Mail: john.mccaskill@rub.de


    Bilder

    Doktorand Abhishek Sharma führt einen der vielen Herstellungsschritte für die Lablets durch. Er positioniert Elektroden, um einen Teil des Wafers zu beschichten.
    Doktorand Abhishek Sharma führt einen der vielen Herstellungsschritte für die Lablets durch. Er posi ...
    © RUB, Damian Gorczany
    None

    Prof. Dr. John McCaskill
    Prof. Dr. John McCaskill
    © RUB, Damian Gorczany
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Doktorand Abhishek Sharma führt einen der vielen Herstellungsschritte für die Lablets durch. Er positioniert Elektroden, um einen Teil des Wafers zu beschichten.


    Zum Download

    x

    Prof. Dr. John McCaskill


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).