idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.06.2016 20:01

Glasbildung durch amorphe Ordnung

Klaus P. Prem Presse - Öffentlichkeitsarbeit - Information
Universität Augsburg

    In einem soeben erschienenen Beitrag im führenden naturwissenschaftlichen Fachjournal "Science" lösen Forscher der Universitäten Augsburg und Paris einen lang anhaltenden Streit über die wahre Natur des Übergangs von der Flüssigkeit in das feste Glas und bestätigen die Theorie, wonach es sich um einen - wenngleich unkonventionellen - Phasenübergang handelt.

    Augsburg/Paris/AL/PL/KPP - Obwohl Gläser zu den ältesten vom Menschen genutzten Materialien gehören, sind die molekularen Vorgänge beim Übergang von der Flüssigkeit in das feste Glas noch weitgehend unverstanden. In ihrem soeben in "Science" erschienenen Beitrag "Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers" lösen nun die Arbeitsgruppen von Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer (beide Universität Augsburg) zusammen mit Kollegen aus Paris eine alte Streitfrage: Glas ist nicht einfach eine "eingefrorene" Flüssigkeit, die bei Abkühlung immer zäher wird, Glas entsteht vielmehr durch einen sogenannten thermodynamischen Phasenübergang, was bedeutet: Das Abkühlen der Glasschmelze geht einher mit einer zunehmend gemeinsamen ("kooperativen") Bewegung, was schließlich zu sogenannter amorpher Ordnung und damit zur Erstarrung führt. Den Nachweis dieses Molekülverhaltens konnten die Wissenschaftler aus Augsburg und Paris dadurch erbringen, dass es ihnen gelungen ist, die Reaktion glasbildender Flüssigkeiten auf ultrastarke elektrische Wechselfelder mit bisher nicht erreichter Präzision zu messen.

    Eine alte Kontroverse

    Gläser haben eine immense technologische Bedeutung und sind nahezu allgegenwärtig in unserem täglichen Leben - von klassischen Anwendungsfeldern wie Fenstern oder Behältern bis hin zu Glasfasern zur optischen Datenübertragung oder zu neuartigen Elektrolytmaterialien in Akkumulatoren oder Brennstoffzellen. Auch die große Gruppe der Polymere oder Metallische Gläser - neuartige Materialien mit gegenüber herkömmlichen Metallen weit überlegenen Werkstoffeigenschaften - gehören physikalisch zur Gruppe der Gläser.

    In den meisten Fällen werden Gläser durch einfaches Abkühlen aus der Schmelze hergestellt. Im Gegensatz zu anderen Flüssigkeiten erstarren Glasschmelzen aber nicht schlagartig, was typisch für einen sogenannten Phasenübergang wäre, sondern kontinuierlich. Diese langsame Änderung der Viskosität wird seit Jahrhunderten von Glasbläsern bei der Herstellung von Glasobjekten genutzt, sie spielt darüber hinaus z. B. auch bei der Verarbeitung vieler Kunststoffe eine wichtige Rolle.

    Ein rein dynamisches Phänomen oder ein Phasenübergang?

    Konventionelle Fest-flüssig-Phasenübergänge sind theoretisch gut verstanden und erklärt, ganz im Gegensatz zum Glasübergang, dessen Ursache seit langem kontrovers diskutiert wird: Aufgrund der erwähnten Besonderheit der Glasbildung, des nicht-schlagartigen Erstarrens also, wird dieser Flüssig-fest-Übergang von einigen theoretischen Physikern als ein von Phasenübergängen grundsätzlich zu unterscheidendes, rein dynamisches Phänomen betrachtet, bei dem die Molekülbewegung bei tiefen Temperaturen kontinuierlich zum Erliegen kommt. Glas erscheint in dieser Theorie also einfach als Flüssigkeit mit extrem hoher Viskosität. Eine andere theoretische Sichtweise erklärt den Glasübergang aber durchaus auf der Basis eines, wenn auch unkonventionellen, Phasenübergangs, der letztlich zu sogenannter "amorpher Ordnung" führt, wobei die Moleküle in zwar ungeordneten, aber wohldefinierten Positionen einfrieren.

    Der Glasübergang – ein Phasenübergang, wenngleich ein unkonventioneller

    Der meist beobachtete instantane, also schlagartige Übergang von einer Flüssigkeit in den kristallinen Festkörper geht einher mit einer für einen Phasenübergang typischen Zunahme der Kooperativität der wechselwirkenden Atome oder Moleküle. Durch hochpräzise Experimente bei Spannungen bis zu einigen 1000 V an unterschiedlichen glasbildenden Flüssigkeiten ist es den Physikern an der Universität Augsburg in Zusammenarbeit mit ihren französischen Kollegen François Ladieu und Giulio Biroli (beide Université Paris-Saclay) und Jean-Philippe Bouchaud (Capital Fund Management, Paris) nun gelungen, eine solche phasenübergangstypische Veränderung der Kooperativität der wechselwirkenden Moleküle auch bei der Glasbildung nachzuweisen. In diesen Experimenten wurde die fünfte Oberwelle eines angelegten Wechselfeldes bei der glasigen Erstarrung detektiert, und daraus ließ sich die wachsende Zahl sich kooperativ bewegender Moleküle bestimmen. "Unser experimenteller Befund favorisiert also deutlich theoretische Modelle, die den Glasübergang als Phasenübergang beschreiben", so Alois Loidl.

    Dreidimensionale statt fraktaler Molekülregionen

    Bei thermodynamischen Phasenübergängen erwartet man theoretisch "fraktale Dimensionen" der kooperativen Molekülregionen, will heißen: Man erwartet, dass diese Regionen geometrische Objekte mit einer Dimension sind, die kleiner ist als die des Raumes. Überraschenderweise fanden die Augsburger und Pariser Physiker nun allerdings, dass sich am Glasübergang durchaus dreidimensionale, also nicht-fraktale Molekülregionen ausbilden. Dies bestätigt Vorhersagen der an diesem Projekt beteiligten theoretischen Physiker Biroli und Bouchaud über die unkonventionelle Natur des der Glaserstarrung zugrundeliegenden Phasenübergangs.

    "Wir haben ein Phänomen, das seit Jahrtausenden auf empirischer Basis genutzt wird, aber bisher nicht wirklich verstanden war, nun auf mikroskopischer Ebene entschlüsselt", resümiert Lunkenheimer und ist sich sicher, dass dies entscheidend zu einem tieferen Verständnis von so unterschiedlichen Materialien wie Silikatgläsern, Polymeren, metallischen Gläsern und sogar von diversen Arten biologischer Materie beitragen werde.

    Die Untersuchungen des Glasübergangs am Zentrum für Elektronische Korrelationen und Magnetismus des Instituts für Physik der Universität Augsburg werden im Rahmen der von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Forschergruppe "Nonlinear response to probe vitrification" durchgeführt.
    _________________________________________________

    Zur Abbildung "Glasbildung auf molekularer Ebene":

    Die Temperatur- und Frequenzabhängigkeit der dielektrischen Suszeptibilität fünfter Ordnung, die die Reaktion des Materials - gemessen bei der fünften Oberwelle des angelegten Wechselfeldes - charakterisiert (Graph im Vordergrund), offenbart eine Vergrößerung von Regionen sich gemeinsam bewegender Moleküle beim Übergang von der Flüssigkeit (rechter Kreis) in das feste Glas (linker Kreis). Diese Regionen sind bei hohen Temperaturen in der viskosen Flüssigkeit klein, im festen Glas sind sie groß. © Universität Augsburg/IfP/EP V
    _________________________________________________

    Originalbeitrag:

    S. Albert, Th. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu: "Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers ". Science, 10 Juni 2016, http://dx.doi.org/ 10.1126/science.aaf3182
    _________________________________________________

    Ansprechpartner an der Universität Augsburg:

    • Priv.-Doz. Dr. Peter Lunkenheimer
    Telefon +49(0)821/598-3649
    peter.lunkenheimer@physik.uni-augsburg.de

    • Prof. Dr. Alois Loidl
    Telefon +49(0)821/598-3600
    alois.loidl@physik.uni-augsburg.de

    Lehrstuhl für Experimentalphysik V/EKM, Universität Augsburg
    Universitätsstraße 1, 86159 Augsburg
    http://www.physik.uni-augsburg.de/exp5/


    Weitere Informationen:

    http://dx.doi.org/ 10.1126/science.aaf3182
    http://www.physik.uni-augsburg.de/lehrstuehle/exp5/


    Bilder

    Glasbildung auf molekularer Ebene (Erläuterungen im Text)
    Glasbildung auf molekularer Ebene (Erläuterungen im Text)
    © Universität Augsburg/IfP/EP V
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Kooperationen
    Deutsch


     

    Glasbildung auf molekularer Ebene (Erläuterungen im Text)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).