idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.06.2016 16:31

Bildung des Bräunungspigments Melanin entschlüsselt

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Wissenschaftler aus Mainz und Kiel decken den molekularen Mechanismus der Melaninbildung durch Mutation beteiligter Enzyme auf

    Melanin ist ein Pigment, das in fast allen Lebewesen vorkommt und beim Menschen für die Braunfärbung der Haut und die Haarfarbe sorgt. Es hilft Insekten, sich gegen schädliche Bakterien zu wehren, und unterstützt ihre Wundheilung. Melanin verursacht aber auch dunkle Flecken auf Früchten wie Bananen. Wie das Pigment genau gebildet wird, war bisher nicht vollständig bekannt. Wissenschaftler der Universitäten in Mainz und Kiel haben jetzt mit einem biotechnologischen Trick den molekularen Mechanismus der Melaninbildung aufgedeckt. Im Zentrum des Vorgangs steht die Aktivität des Enzyms Tyrosinase. Eine wichtige Lücke im Verständnis der Funktionsweise dieses Enzyms konnte nun geschlossen werden. Die Entdeckung öffnet den Weg für zahlreiche Anwendungen in der Kosmetik- und Lebensmittelindustrie, in der Umwelttechnik und auch in der Medizin.

    Die Bildung von Melanin wird durch die Tyrosinase gestartet. „Diese Aktivität haben wir bisher nicht ganz verstanden, wohingegen die Aktivität der verwandten, aber weniger effektiven Catecholoxidasen, die ebenfalls Melanin bilden können, besser bekannt ist“, erklärt Heinz Decker, Leiter des Instituts für Molekulare Biophysik an der Johannes Gutenberg-Universität Mainz (JGU). Über den Hintergrund der unterschiedlichen Reaktivität von Tyrosinasen und Catecholoxidasen war in den vergangenen Jahrzehnten viel geforscht worden, jedoch ohne Erfolg.

    Ausgehend von Hinweisen, die eine israelische Studie unter der Leitung von Dr. A. Fishman geliefert hatte, klärten Heinz Decker und Even Solem von der JGU und Felix Tuczek von der Christian-Albrechts-Universität zu Kiel den Reaktionsmechanismus experimentell auf. Sie wandelten dazu eine Catecholoxidase aus Riesling-Weinblättern biotechnologisch in eine Tyrosinase um, indem sie eine gezielte Mutation vornahmen. Als Schlüssel für die unterschiedliche Reaktivität erweisen sich zwei Aminosäuren, die hoch konservierte Glutaminsäure und Asparagin in der Nähe des katalytischen Zentrums. Sie binden ein spezielles Wassermolekül innerhalb der Proteinmatrix so stark, dass eine Ladungsverschiebung im Wassermolekül erfolgt. Dadurch wird eine Seite sehr negativ, sodass sie ein positives Proton von dem Monophenol abzieht. Damit startet die Tyrosinase. Sie wandelt Monophenole in chemisch sehr reaktive Substanzen, sogenannte Chinone, um, die sich selbstständig zu Melanin verbinden. Fehlt dagegen das Asparagin oder das Wassermolekül in dem Protein, liegt keine Tyrosinase vor, sondern nur eine Catecholoxidase.

    Mit dieser Entdeckung ist ein entscheidender Schritt in der Katalyse von Tyrosinasen und damit der Synthese von Melanin verstanden. Dies erlaubt es in Zukunft, die Aktivierung, Hemmung und Modifikation sowie biotechnologische Anwendungen im Bereich der Medizin, Kosmetik und Umweltforschung gezielt mittels gentechnischer Methoden zu optimieren. „Gleichzeitig haben wir damit ein weiteres Kapitel in der Kupferchemie aufgeklärt“, fasst Decker zusammen. Die Ergebnisse der Untersuchung wurden in der renommierten Fachzeitschrift Angewandte Chemie International Edition veröffentlicht.

    Veröffentlichung:
    Even Solem, Felix Tuczek, Heinz Decker
    Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference
    Angewandte Chemie International Edition, 15. Januar 2016
    DOI: 10.1002/anie.201508534

    Abb.:
    http://www.uni-mainz.de/bilder_presse/10_biophysik_tyrosinase.jpg
    Blick in das katalytische Zentrum einer Tyrosinase: Die zwei Aminosäuren Glu235 und Asn240 fixieren ein Wassermolekül HOH112, das dem Substrat (p-Tyrosol) ein Proton entreißt (weiß). Das entstandene Phenolat kann nun an das Kupferion (CuA) binden und die Tyrosinase-Reaktion starten.
    Abb./©: Institut für Molekulare Biophysik, JGU

    Weitere Informationen:
    Prof. Dr. Heinz Decker
    Institut für Molekulare Biophysik
    Johannes Gutenberg-Universität Mainz
    55099 Mainz
    Tel. +49 6131 39-23570
    Fax +49 6131 39-23557
    E-Mail: hdecker@uni-mainz.de
    http://www.biophysik.uni-mainz.de/

    Weitere Links:
    http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508534/full (Angewandte Chemie International Edition)
    http://onlinelibrary.wiley.com/doi/10.1002/ange.201508534/full (Angewandte Chemie, deutsche Ausgabe)


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Chemie, Ernährung / Gesundheit / Pflege, Medizin, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).