idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.07.2016 10:00

Eine Kamera für unsichtbare Felder

Dr. Olivia Meyer-Streng Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Physiker vom Labor für Attosekundenphysik der LMU und des MPQ haben ein Elektronenmikroskop entwickelt, mit dem sie pro Sekunde Billionen Mal oszillierende elektromagnetische Felder sichtbar machent.

    Elektromagnetische Felder sind der Motor unserer Elektronik. Sie verändern sich rasend schnell, sind unsichtbar und damit schwer zu fassen. Eine bessere Kenntnis dieser Felder in elektronischen Bauteilen, wie etwa Transistoren, ist allerdings notwendig, bevor die Elektronik der Zukunft Realität werden kann. Einen wichtigen Meilenstein dorthin haben nun die Ultrakurzzeitphysiker vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) erreicht. Sie haben ein Elektronenmikroskop gebaut, mit dem sie elektromagnetische Felder sichtbar machen und deren ultraschnelle Veränderungen aufzeichnen können.

    Alle elektronischen Geräte des Alltags werden letztendlich von elektromagnetischen Feldern getrieben. Durch sie verschieben sich Elektronen und Ströme in Bauteilen wie etwa in Transistoren. Dort sorgen sie letztendlich für Datenfluss oder Speichervorgänge. Eine bessere Kenntnis der elektromagnetischen Feldverläufe und ihrer ultraschnellen Veränderungen in elektronischen Bauteilen könnte die Elektronik der Zukunft effizienter gestalten. Ein Elektronenmikroskop zur Analyse elektromagnetischer Felder haben nun Physiker der Arbeitsgruppe „Ultrafast Electron Imaging“ des Labors für Attosekundenphysik der LMU und des MPQ entwickelt.

    Das Elektronenmikroskop wird mit ultrakurzen Laserpulsen von wenigen Femtosekunden Dauer betrieben (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Diese Laserpulse erzeugen wiederum Elektronenpulse, die nur aus einzelnen Elektronen bestehen und durch das Einwirken von Terahertz-Strahlung weiter verkürzt werden. Diese Technologie haben die Münchner Physiker schon vorher entwickelt (Science 22. April 2016, doi: 10.1126/science.aae0003) und sie erlaubt die Erzeugung von Elektronenpulsen, die kürzer als eine halbe Schwingung einer Lichtwelle sind.

    Mit diesen ultrakurzen Elektronenpulsen werden nun elektromagnetische Felder sichtbar gemacht. Im Experiment ließen die Physiker die Elektronenpulse auf eine Mikroantenne treffen. Diese Mikroantenne wurde zuvor durch Terahertz-Strahlung angeregt, sodass in ihrem Umkreis optische Effekte, also elektromagnetische Felder, entstanden. Gleichzeitig durchdrangen die kurzen Elektronenpulse die Antenne. An den elektromagnetischen Feldern wurden die Elektronenpulse gestreut und deren Ablenkung aufgezeichnet. Über die Ablenkung der Elektronenpulse erhielten die Forscher Auskunft über die räumliche Verteilung, die zeitliche Variation, die Richtung und die Polarisation des Lichts, das die Mikroantenne aussendete.

    „Um solche elektromagnetischen Lichtfelder zu visualisieren, sind zwei Vorrausetzungen wichtig“, erklärt Dr. Peter Baum, der Leiter der Experimente. „Die Elektronenpulse müssen kürzer sein als ein Lichtzyklus. Und zudem muss die Durchgangszeit durch die zu untersuchende Struktur kürzer sein als ein Lichtzyklus.“ Die Elektronenpulse fliegen ungefähr mit halber Lichtgeschwindigkeit.

    Mit ihrer erweiterten Elektronenmikroskopie haben die LAP-Physiker nun eine Grundlage geschaffen, selbst kleinste und schnellste elektromagnetische Felder exakt zu detektieren und damit besser zu verstehen, wie etwa Transistoren oder optische Schalter arbeiten und was in ihnen passiert.

    Interessant ist die neue Technologie außerdem für die Entwicklung und Analyse von Metamaterialien. Metamaterialien sind künstliche Nanostrukturen, deren Durchlässigkeit für elektrische und magnetische Felder von der in der Natur üblichen grundlegend abweicht, so dass optische Phänomene entstehen, die sich mit herkömmlichen Stoffen niemals realisieren lassen. Metamaterialien eröffnen völlig neue Perspektiven in der Optik und Optoelektronik, und könnten zu wichtigen Bausteinen für lichtgetriebene Schaltkreise und Rechner der Zukunft werden. Mit ihrer Elektronenmikroskopie-Technologie tragen die LAP-Physiker dazu bei, dies alles besser zu verstehen und Realität werden zu lassen. Thorsten Naeser

    Originalveröffentlichung:

    A. Ryabov and P. Baum
    Electron microscopy of electromagnetic waveforms
    Science, 22. Juli 2016, Vol. 353 Issue 6297; doi: 10.1126/science.aaf8589

    Kontakt:

    Dr. Peter Baum
    Ludwig-Maximilians-Universität München
    Am Coulombwall 1
    85748 Garching b. München
    Telefon: +49 (0)89 / 289 -14102
    E-Mail: peter.baum@lmu.de
    www.ultrafast-electron-imaging.de

    Dr. Olivia Meyer-Streng
    Presse-und Öffentlichkeitsarbeit
    Max-Planck-Institut für Quantenoptik, Garching b. München
    Telefon: +49 (0)89 32 905 -213
    E-Mail: olivia.meyer-streng@mpq.mpg.de


    Bilder

    Dreidimensionale Darstellung der Veränderung eines elektromagnetischen Lichtfeldes, das sich um eine Mikroantenne gebildet hat. „Fotografiert“ wurde das Lichtfeld mit Elektronenpulsen.
    Dreidimensionale Darstellung der Veränderung eines elektromagnetischen Lichtfeldes, das sich um eine ...
    Quelle: Grafik: Dr. Peter Baum


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Dreidimensionale Darstellung der Veränderung eines elektromagnetischen Lichtfeldes, das sich um eine Mikroantenne gebildet hat. „Fotografiert“ wurde das Lichtfeld mit Elektronenpulsen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).