idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.09.2016 11:46

Nanotechnologie unterstützt die Behandlung von schwarzem Hautkrebs

Reto Caluori Kommunikation & Marketing
Universität Basel

    Mit einer neuartigen nanotechnologischen Methode lassen sich Veränderungen im Erbgut von Gewebeproben schnell und einfach nachweisen. Dies zeigen Forschende des Swiss Nanoscience Institute, der Universität Basel und des Universitätsspitals Basel in ersten klinischen Tests am Beispiel von Genmutationen bei Patienten mit schwarzem Hautkrebs. Die Studie wurde in der Fachzeitschrift «Nano Letters» veröffentlicht.

    Nach Schätzungen der American Skin Cancer Foundation erkranken heute mehr Menschen an Hautkrebs als an Brust-, Prostata-, Lungen- und Dickdarmkrebs zusammen. Zwar werden nur etwa 5% aller Hautkrebsarten dem schwarzen Hautkrebs (malignes Melanom) zugeordnet, diese Fälle sind jedoch die gefährlichsten und können zum Tod führen. Etwa die Hälfte aller Patienten, die schwarzen Hautkrebs bekommen, weist eine bestimmte Erbgutveränderung auf. Es handelt sich dabei um eine Mutation des Gens BRAF (B Gene for Rapid Acceleration of Fibrosarcoma), die zu einer unkontrollierten Vermehrung der Zellen führt.

    Es gibt inzwischen Medikamente, die diese speziellen Mutationen ausnützen, um den Krebs zu bekämpfen und damit die Lebenserwartung der Patienten signifikant verlängern. Sie wirken allerdings nur, wenn die entsprechende Genmutation tatsächlich vorhanden ist. Sonst treten massive Nebenwirkungen auf, ohne dass die gewünschte Wirkung einsetzt. «Es ist daher unerlässlich, die Mutationen zuverlässig in Gewebeproben identifizieren zu können. Nur so können die Patienten richtig und erfolgreich behandeln werden», erläutert Mitautorin Prof. Katharina Glatz vom Institut für Pathologie des Universitätsspitals Basel.

    Beschichtete Mikrofederbalken

    Das Team um Prof. Ernst Meyer und Prof. Christoph Gerber vom Swiss Nanoscience Institute und vom Departement Physik der Universität Basel hat nun in einer klinischen Pilotstudie erstmals Nanosensoren eingesetzt, um in Gewebeproben von Patienten mit schwarzem Hautkrebs die Mutationen nachzuweisen. Die Forschenden verwendeten dazu winzige Federbalken (Cantilever), die auf unterschiedliche Weise beschichtet wurden. Auf einigen befand sich eine Erkennungssequenz für die gesuchte Mutation.

    Aus der Gewebeprobe der Patienten wurde nun Erbgut (RNA) isoliert und auf diese Cantilever aufgebracht. Ist die Erbgutveränderung vorhanden, bindet die RNA des Patienten an die Erkennungssequenz auf dem Cantilever. Aufgrund des entstehenden Oberflächenstresses verbiegt sich der Cantilever, was sich messen lässt. Ist die Mutation nicht in der RNA-Probe enthalten, kommt es nicht zu der Verbiegung – nur eine spezifische Bindung führt also zu einem Signal. Der Einsatz der Nano-Cantilever hat den Vorteil, dass keine zeitaufwändigen Methoden benötigt werden und nicht einmal ein Tag von der Entnahme der Biopsie bis zur Diagnose vergeht.

    Vor 30 Jahren nicht denkbar

    Mit der vorliegenden Arbeit konnten die Basler Forschungsteams zeigen, dass nanomechanische Mikrocantilever in der Lage sind, Mutationen in komplexen Mischungen totaler RNA zu identifizieren, die aus Gewebeproben isoliert wurde. Ursprünglich wurden Cantilever nur in Rasterkraftmikroskopen verwendet. Prof Christoph Gerber, dem am 6. September in Oslo zusammen mit Gerd Binnig und Cal Quate der Kavli-Preis für die Entwicklung dieses Rasterkraftmikroskops verliehen wird, stellt fest: «Wir haben vor 30 Jahren nicht voraussehen können, dass unsere Technologie einmal in der Klinik für personalisierte Medizin angewendet werden könnte – sozusagen vom Labor ans Krankenbett.»

    Originalbeitrag

    François Huber, Hans Peter Lang, Katharina Glatz, Donata Rimoldi, Ernst Meyer, and Christoph Gerber
    Fast Diagnostics of BRAF Mutations in Biopsies from Malignant Melanoma
    Nano Letters (2016), doi: 10.1021/acs.nanolett.6b01513

    Weitere Auskünfte

    • Dr. François Huber, Universität Basel, Departement Physik, Tel. +41 61 207 37 69, E-Mail: francois.huber@unibas.ch
    • Prof. Dr. Christoph Gerber, Universität Basel, Departement Physik, Tel. +41 61 207 37 37, E-Mail: christoph.gerber@unibas.ch


    Bilder

    Der Federbalken trägt die Erkennungssequenz für die gesuchte Mutation. Ist diese in der Probe vorhanden, bindet das entsprechende RNA-Stück, verbiegt sich der Federbalken, was sich messen lässt.
    Der Federbalken trägt die Erkennungssequenz für die gesuchte Mutation. Ist diese in der Probe vorhan ...
    (Bild: Universität Basel, Departement Physik)
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie, Medizin, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Der Federbalken trägt die Erkennungssequenz für die gesuchte Mutation. Ist diese in der Probe vorhanden, bindet das entsprechende RNA-Stück, verbiegt sich der Federbalken, was sich messen lässt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).