idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.10.2016 07:30

Von Resonanzen und Blockaden oder: Wie wirkt der Kondo-Effekt?

Petra Riedl Referat II/2, Kommunikation
Universität Regensburg

    Physiker der Universität Regensburg bringen neue Erkenntnisse zum Kondo-Effekt hervor

    Die Regensburger Physiker um Prof. Dr. Milena Grifoni beschäftigten sich ein weiteres Mal mit der Wirkweise des Kondo-Effektes. Sie fanden heraus, dass der vor 80 Jahren entdeckte Kondo-Effekt unter bestimmten Bedingungen zwei gänzlich verschiedene Wirkungen hervorrufen kann: Resonanzen und Blockaden. Das Forschungsergebnis zeigt, dass sich in wissenschaftlichen Entdeckungen vergangener Jahre durchaus noch Geheimnisse verbergen können, die darauf warten, in der Gegenwart oder Zukunft weiterentwickelt zu werden.

    Eine der grundlegendsten Fragen in der Physik ist das Verhalten von Materialien bei sehr niedrigen Temperaturen. Bereits 1934 wurde ein neuer Effekt in bestimmten Metallen entdeckt, bei dem unterhalb einer kritischen Temperatur der Widerstand ansteigt, anstatt, wie man vermuten würde, zu stagnieren. Der Grund dafür wurde erst 32 Jahre später von dem japanischen Physiker Jun Kondo gefunden. Der nach ihm benannte Kondo-Effekt beruht auf Defekten in diesen Metallen, an denen Elektronen streuen können, ähnlich wie Billardkugeln auf einem unebenen Billardtisch. Der Effekt basiert auf der Eigenrotation der Elektronen, dem sogenannten Spin. Dieser kann wegen der Quantenmechanik nur zwei Zustände annehmen, im Englischen oft "up" und "down" genannt. Wenn die Störstelle einen Spin besitzt, führt dieser zu Prozessen, in denen ein ankommendes Elektron gestreut wird und dabei seinen Spin mit dem der Störstelle austauscht, sogenannte Spin-flip-Prozesse. Kondo hat festgestellt, dass die Gesamtheit vieler Prozesse eine anziehende Wirkung entfaltet und sich eine Wolke aus Elektronen um die Störstelle bildet. Da nun viele Elektronen in diesen Wolken gefangen werden, erhöht sich der Widerstand wieder.

    Experimentelle Physiker aus Frankreich haben diesen Effekt in sogenannten Kohlenstoffnanoröhren gemessen. Diese Röhrchen bestehen nur aus Kohlenstoff und sind nur wenige Nanometer dick, können aber sehr lang werden. Die Wissenschaftler haben diese Kohlenstoffnanoröhre zwischen zwei Kontakte gebracht. Durch die negative Ladung der Elektronen und die damit verbundene Abstoßung lässt sich auf diese Weise ein einzelnes Elektron darin fangen, es wirkt dabei wie eine einzige magnetische Störstelle. Der entscheidende Unterschied zu Metallen ist, dass der Weg für Elektronen vorerst durch das gefangene Elektron blockiert ist. Durch geschickte Einstellung der Experimentparameter lässt sich der Kondo-Effekt herbeiführen und die Kondo-Wolke bildet sich. Sie wird so groß, dass sie beide Kontakte mit einschließt und dadurch Elektronen passieren können. Im Gegensatz zu Metallen wird der Widerstand dadurch kleiner. Zusätzlich zum Spin gibt es bei den Kohlenstoff Nanoröhren einen weiteren Freiheitsgrad. Die Elektronen können sich beim Überqueren der Röhre auf der Oberfläche im Uhrzeigersinn oder im Gegenuhrzeigersinn schrauben. Jedes Elektron kann also einen von vier verschiedenen Zuständen annehmen, die Kombination aus Spin und Bahndrehimpuls.Das Experiment hat gezeigt, dass nur zwei dieser Zustände wirklich eine Minderung des Widerstandes erzeugen, bei den anderen beiden passiert hingegen nichts.

    Das Team um Prof. Dr. Milena Grifoni, Lehrstuhl für Theoretische Physik an der Universität Regensburg, hat jetzt die Begründung für dieses Phänomen gefunden. Die Erklärung ist ähnlich zum traditionellen Kondo-Effekt, bei dem Spin-flip-Prozesse die Resonanz bestimmen. Man kann durch geschickte Kombination aus den vier Zuständen vier Eigenzustände bestimmen und ihnen einen Pseudospin zuweisen. Dieser verhält sich genau wie der richtige Spin, ist aber ein komplexes, theoretisches Konstrukt. Die Kondo-Resonanz und -Wolke bilden sich jedoch nur bei Prozessen aus, die den Pseudospin flippen, bei den anderen passiert nichts. Das Experiment in Frankreich und die theoretische Erklärung der Regensburger Physiker haben gezeigt, dass der Kondo-Effekt neben den Kondo-Resonanzen eben auch genau das Gegenteil, die Blockade dieser, bewirken kann und dass er selbst nach 80 Jahren seit seiner Entdeckung immer noch Geheimnisse birgt.

    Das Forschungsergebnis wurde in der Fachzeitschrift „Nature Communications“ publiziert
    (DOI: 10.1038/ncomms12442).

    Ansprechpartner für Medienvertreter:
    Prof. Dr. Milena Grifoni
    Lehrstuhl für Theoretische Physik
    Universität Regensburg
    Tel. 0941 943-2035
    Milena.Grifoni@physik.uni-regensburg.de


    Bilder

    Die negativ geladenen Elektronen stoßen sich gegenseitig ab, eines blockiert die Mitte. Durch den Kondo-Effekt bildet sich eine Elektronenwolke aus und der Strom kann wieder fließen.
    Die negativ geladenen Elektronen stoßen sich gegenseitig ab, eines blockiert die Mitte. Durch den Ko ...
    Quelle: Prof. Dr. Milena Grifoni


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Kooperationen
    Deutsch


     

    Die negativ geladenen Elektronen stoßen sich gegenseitig ab, eines blockiert die Mitte. Durch den Kondo-Effekt bildet sich eine Elektronenwolke aus und der Strom kann wieder fließen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).