idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.01.2017 13:28

Proteinforschung: Der Computer als Mikroskop

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Mit einer Kombination aus Infrarotspektroskopie und Computersimulationen haben Forscher der Ruhr-Universität Bochum (RUB) neue Einblicke in die Funktionsweise von Schalterproteinen gewonnen. Dank hoher zeitlicher und räumlicher Auflösung belegten sie unter anderem den entscheidenden Beitrag eines Magnesiumatoms für das An- und Ausschalten der sogenannten G-Proteine.

    G-Proteine sind zum Beispiel am Sehen, Riechen, Schmecken und an der Blutdruckregulation beteiligt. Sie sind Angriffspunkt für viele Medikamente. „Ein detailliertes Verständnis ihrer Funktionsweise ist daher nicht nur von akademischem Interesse“, sagt Prof. Dr. Klaus Gerwert, Leiter des Lehrstuhls für Biophysik. Er berichtet die Ergebnisse gemeinsam mit seinen Bochumer Kollegen Privatdozent Dr. Carsten Kötting und Daniel Mann im Biophysical Journal. Die Zeitschrift widmete dem Thema in der Ausgabe vom 10. Januar 2017 die Titelgeschichte (http://www.cell.com/biophysj/issue?pii=S0006-3495%2816%29X0003-3).

    G-Proteine als Krankheitsquelle

    An alle G-Proteine kann das Molekül GTP binden. Spaltet ein Enzym eine Phosphatgruppe vom gebundenen GTP ab, wird das G-Protein ausgeschaltet. Diese sogenannte GTP-Hydrolyse läuft innerhalb von Sekunden im aktiven Zentrum der Enzyme ab. Funktioniert der Prozess nicht, kann das schwere Krankheiten auslösen, etwa Krebs, Cholera oder das seltene McCune-Albright-Syndrom, das sich zum Beispiel durch einen gestörten Knochenstoffwechsel auszeichnet.

    Magnesium wichtig für Schaltmechanismus

    Damit die GTP-Hydrolyse stattfinden kann, muss ein Magnesiumatom im aktiven Zentrum des Enzyms vorhanden sein. Das Forscherteam beobachtete erstmals direkt, wie das Magnesium Geometrie und Ladungsverteilung seiner Umgebung beeinflusst. Nach dem Ausschalten verbleibt das Atom in der Bindetasche des Enzyms. Bislang waren Forscher davon ausgegangen, dass das Magnesium die Tasche nach dem Schaltprozess verlässt.

    Möglich machte die Erkenntnisse eine am RUB-Lehrstuhl für Biophysik entwickelte Methode. Sie erlaubt, enzymatische Prozesse mit hoher zeitlicher und räumlicher Auflösung in ihrem natürlichen Zustand zu verfolgen. Es handelt sich dabei um eine besondere Form der Spektroskopie, die zeitaufgelöste Fourier-Transform-Infrarot-Differenzspektroskopie. Allerdings geben die damit gemessenen Daten keine Auskunft darüber, an welcher Stelle des Enzyms ein Prozess gerade stattfindet. Diese Information gewinnen die Forscher durch quantenmechanische Computersimulationen von Strukturmodellen. „Erst mithilfe der Computersimulation können wir die in den Infrarotspektren versteckten Informationen decodieren“, erklärt Carsten Kötting. So wird der Computer quasi zum Mikroskop.

    Wie Proteine das Ausschalten beschleunigen

    In der aktuellen Studie zeigten die RUB-Biophysiker auch, wie das spezialisierte Proteinumfeld dazu beiträgt, die GTP-Hydrolyse zu beschleunigen. Sie untersuchten die Rolle der Aminosäure Lysin, die in vielen G-Proteinen an der gleichen Stelle positioniert ist. Sie bindet genau die Phosphatgruppe des GTP-Moleküls, von der beim Ausschalten des G-Proteins ein Phosphat abgespalten wird.

    „Lysin hat die Aufgabe, negative Ladungen von der dritten Phosphatgruppe auf die zweite Phosphatgruppe zu übertragen und damit die GTP-Hydrolyse zu beschleunigen“, erklärt Daniel Mann. „Das ist ein weiterer wichtiger Ansatzpunkt, um langfristig Medikamente gegen Krebs und andere schwerwiegende Erbkrankheiten zu entwickeln.“

    Förderung

    Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen des Sonderforschungsbereichs 642.

    Originalveröffentlichung

    Daniel Mann, Udo Höweler, Carsten Kötting, Klaus Gerwert: Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy, in: Biophysical Journal, 2017, DOI: 10.1016/j.bpj.2016.11.3195

    Pressekontakt

    Prof. Dr. Klaus Gerwert
    Lehrstuhl für Biophysik
    Fakultät für Biologie und Biotechnologie
    Ruhr-Universität Bochum
    Tel.: 0234 32 24461
    E-Mail: gerwert@bph.rub.de

    Privatdozent Dr. Carsten Kötting
    Lehrstuhl für Biophysik
    Fakultät für Biologie und Biotechnologie
    Ruhr-Universität Bochum
    Tel.: 0234 32 24873
    E-Mail: carsten.koetting@rub.de


    Bilder

    Das Forscherteam Carsten Kötting, Daniel Mann und Klaus Gerwert (von links) bereitet das Messgerät vor. Der Detektor des Spektrometers muss mit flüssigem Stickstoff gekühlt werden.
    Das Forscherteam Carsten Kötting, Daniel Mann und Klaus Gerwert (von links) bereitet das Messgerät v ...
    Quelle: © RUB, Marquard


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das Forscherteam Carsten Kötting, Daniel Mann und Klaus Gerwert (von links) bereitet das Messgerät vor. Der Detektor des Spektrometers muss mit flüssigem Stickstoff gekühlt werden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).