idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.01.2017 13:04

Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

Dr. Bernold Feuerstein Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    Kein Unterschied zwischen Protonen und Antiprotonen messbar

    So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Wissenschaftler suchen daher nach dem kleinen Unterschied zwischen einem Teilchen und seinem Antiteilchen, der die Existenz von Materie erklären könnte. Die BASE-Kollaboration am Forschungszentrum CERN hat bei dieser Suche neue Maßstäbe gesetzt, indem sie eine wichtige Eigenschaft des Antiprotons mit höchster Genauigkeit vermessen konnte. Der g-Faktor, ein Maß für das magnetische Moment, wurde dabei gegenüber früheren Messungen um den Faktor sechs verbessert.

    Die Idee, dass so etwas wie Antimaterie existieren müsste, kam Ende der 1920er Jahre auf. Nur wenige Jahre später wurden erstmals Positronen, die Antiteilchen von Elektronen, entdeckt. Während Positronen auf der Erde natürlicherweise vorkommen, müssen Antiprotonen, die Antiteilchen von Protonen, allerdings künstlich erzeugt werden. Der Speicherring „Antiproton Decelerator“ des CERN produziert gekühlte Antiprotonen in großer Menge für ganz unterschiedliche Antimaterie-Studien. Bei den Experimenten der BASE-Gruppe, an der die Abteilung „Gespeicherte und Gekühlte Ionen“ des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg beteiligt ist, werden tiefgekühlte Antiprotonen einzeln in einer elektromagnetischen Teilchenfalle untersucht.

    Der Aufbau besteht aus drei Penningfallen: Eine Vorratsfalle bewahrt eine Wolke von Antiprotonen für den Versuch auf und liefert einzelne Teilchen an eine Falle, die zur kontinuierlichen Messung des Magnetfelds dient, und an die eigentliche Analysefalle. Die Analysefalle wiederum wird von einer extrem großen „magnetischen Flasche“ überlagert, einem Magnetfeld mit einer Inhomogenität von 300 Kilotesla pro Quadratmeter.

    Diese ultrastarke magnetische Flasche ist notwendig, um überhaupt die Spin-Flip-Technik anwenden zu können, die der Nobelpreisträger Hans Georg Dehmelt für die Vermessung des magnetischen Moments des Elektrons und des Positrons entwickelt hat. „Die Herausforderung ist in unserem Fall aber wesentlich größer, weil das magnetische Moment des Protons und des Antiprotons im Vergleich dazu etwa 660 Mal kleiner ist“, schreiben die BASE-Wissenschaftler in einer Veröffentlichung von Nature Communications. Das Experiment zur Bestimmung der magnetischen Eigenschaften des Protons hatte Prof. Dr. Klaus Blaum im Rahmen seiner Helmholtz-Hochschul-Nachwuchsgruppe 2005 in Zusammenarbeit mit Prof. Dr. Jochen Walz an der Universität Mainz ins Leben gerufen. Mit einer Hochpräzisionsmessung des Protons aus dem Jahr 2014 nimmt die Arbeitsgruppe unangefochten die Spitzenstellung auf diesem Forschungsfeld ein.

    G-Faktor mit sechsfach höherer Genauigkeit gemessen

    Die Vermessung des Antiprotons folgt diesem Beispiel. Der g-Faktor wurde anhand von sechs Messungen mit einer Genauigkeit von 0,8 Millionstel bestimmt. Der Wert von 2,7928465(23) ist sechs Mal genauer als der bisherige Rekordhalter einer anderen CERN-Forschungsgruppe aus dem Jahr 2013. Noch im Jahr 2011 war das magnetische Moment des Antiprotons nur auf drei Nachkommastellen genau bekannt. Das neue Ergebnis stimmt innerhalb der erreichten experimentellen Unsicherheit mit dem 2014 in Mainz gemessenen g-Faktor des Protons von 2,792847350(9) überein. „Das bedeutet, dass wir innerhalb der experimentellen Messunsicherheit keinen Unterschied zwischen Protonen und Antiprotonen ausmachen können. Auf diesem Niveau stimmt unsere Messung mit den Erwartungen des Standardmodels überein“, erklärt Stefan Ulmer, Sprecher der BASE-Kollaboration am CERN und früherer Mitarbeiter in der AG Walz.

    Proton und Antiproton erscheinen somit weiterhin spiegelsymmetrisch und bieten vorerst noch keinen Ansatzpunkt für eine Erklärung, weshalb Materie überhaupt existiert und sich nicht in den ersten Augenblicken des Urknalls zerstrahlt hat. Die BASE-Kollaboration will in Zukunft aber noch einen Schritt weiter gehen und die Präzision ihrer Messungen weiter erhöhen, indem sie mit einer Doppelpenningfalle arbeitet., Diese schwierigere Technik kam für die Mainzer Proton-Messungen 2014 zum Einsatz und bietet eine tausendfach höhere Genauigkeit.

    „Die Asymmetrie zwischen Materie und Antimaterie ist so offenkundig, irgendetwas muss passiert sein, das im Rahmen der modernen Physik bisher nicht verstanden ist. Unsere große Motivation ist es, Ansätze zu finden, die zur Lösung dieses spannenden Rätsels beitragen“, erklärt Ulmer zu den weiteren Vorhaben. Außer dem Max-Planck-Institut für Kernphysik sind an den Forschungsprojekten auch das japanische Forschungszentrum RIKEN, die Johannes Gutenberg-Universität Mainz, die Leibniz Universität Hannover und das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt beteiligt.

    ________________________________________

    Originalveröffentlichung:

    Hiroki Nagahama et al.
    Sixfold improved single particle measurement of the magnetic moment of the antiproton.
    Nature Communications 8, 14084 (2017), DOI: 10.1038/ncomms14084

    Kontakt:

    Prof. Dr. Klaus Blaum, MPIK
    Tel.: 06221 516850
    E-Mail: klaus.blaum(at)mpi-hd.mpg.de

    Dr. Stefan Ulmer, Sprecher BASE-Kollaboration, CERN
    Tel. +41 75 411 9072
    E-Mail: stefan.ulmer(at)cern.ch

    Prof. Dr. Jochen Walz, Johannes Gutenberg-Universität Mainz (JGU)
    Tel. 06131 39-25976
    E-Mail: Jochen.Walz(at)uni-mainz.de


    Bilder

    BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf
    BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf
    Foto: Stefan Sellner, RIKEN/BASE
    None

    BASE-Penningfallensystem, das zur Messung des magnetischen Moments des Antiprotons verwendet wurde.
    BASE-Penningfallensystem, das zur Messung des magnetischen Moments des Antiprotons verwendet wurde.
    Foto: Georg Schneider, JGU/BASE
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf


    Zum Download

    x

    BASE-Penningfallensystem, das zur Messung des magnetischen Moments des Antiprotons verwendet wurde.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).