idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.01.2017 11:54

TU Darmstadt: Neue Erkenntnisse zur Reparatur von DNA-Schäden / Bedeutsam für Krebsforschung

Silke Paradowski Kommunikation
Technische Universität Darmstadt

    Darmstadt, 27. Januar 2017. Ihre Ergebnisse sind bedeutsam für Verfahren der Gentherapie und für das Verständnis der Entartung von Zellen: Ein Forscherteam vom Fachbereich Biologie der TU Darmstadt hat herausgefunden, dass die Prozesse zur Reparatur von DNA-Schäden deutlich komplexer ablaufen als bisher angenommen wurde. Dabei werden die Enden von Brüchen in der Doppelhelix nicht einfach verknüpft, sondern in einem genau choreographierten Vorgang erst so verändert, dass die ursprüngliche Erbinformation wieder hergestellt werden kann. Die Ergebnisse wurden jetzt in der Fachzeitschrift Molecular Cell veröffentlicht.

    Die DNA als Träger unserer Erbinformation ist einer ständigen Schädigung ausgesetzt. Beim schwerwiegendsten aller Schäden, dem DNA-Doppelstrangbruch, werden beide Stränge der Doppelhelix gebrochen und der DNA-Strang in zwei Stücke geteilt. Werden solche Brüche von der Zelle nicht effizient behoben, geht wichtige Erbinformation verloren, was oftmals mit dem Zelltod einhergeht oder zu bleibenden genetischen Veränderungen und zur Entartung von Zellen führt. So haben sich im Laufe der Evolution Reparaturwege für diesen DNA-Schaden entwickelt, bei denen viele Enzyme zusammenspielen, um die Erbinformation mit höchstmöglicher Präzision wiederherzustellen.

    Nach heutigem Kenntnisstand gibt es zwei Hauptwege zur Reparatur von DNA-Doppelstrangbrüchen, die sich allerdings in ihrer Präzision sowie in ihrer Komplexität maßgeblich unterscheiden. Beim mutmaßlich einfacheren Weg, der sogenannten nicht-homologen Endverknüpfung, werden die Bruchenden möglichst schnell verbunden, ohne dass allzu großer Wert darauf gelegt wird, die geschädigte Erbinformation akkurat wiederherzustellen. Der zweite Reparaturweg, die homologe Rekombination, benutzt dagegen die auf einer Schwesterkopie vorliegende, exakt identische Information, um die geschädigte DNA hochpräzise zu reparieren. Allerdings liegen solche Schwesterkopien nur in sich teilenden Zellen vor, da die Erbinformation vor der Zellteilung verdoppelt werden muss. Die meisten Zellen des menschlichen Körpers befinden sich jedoch nicht in der Teilung und sind daher auf den mutmaßlich fehlerhafteren Weg der Endverknüpfung angewiesen.

    „Hier setzt unsere Forschung an“, erklärt TU-Professor Markus Löbrich, der sich mit seiner Arbeitsgruppe und Kollegen der University of Sussex in England seit vielen Jahren dem Studium der Reparatur von DNA-Doppelstrangbrüchen widmet. „Es erschien uns wenig einsichtig, dass beim Reparaturvorgang der nicht-homologen Endverknüpfung wichtige genetische Information verloren gehen soll.“ Die Forschungsteams untersuchten daraufhin – mit überraschendem Ergebnis – die enzymatischen Vorgänge, die an den Brüchen vor deren Verknüpfung ablaufen. Im Gegensatz zur bisherigen Lehrmeinung werden die Bruchenden nämlich nicht einfach miteinander verbunden, sondern durch spezielle Enzyme derart verändert, dass die durch den Bruch verloren gegangene Information durch Zuhilfenahme einer Kopie identisch repariert werden könnte.

    Diese Veränderungen an den Bruchenden – im Fachjargon „Resektion“ genannt – erinnern sehr stark an den Vorgang der homologen Rekombination, bei dem eine Schwesterkopie als Matrize zur präzisen Reparatur dient. Nur gibt es in nicht teilenden Zellen keine Schwesterkopie der DNA, so dass bisher noch unklar ist, woher die für die präzise Reparatur notwendige Kopie der Erbinformation stammen könnte. Dennoch liefern die neuen Befunde eindeutige Hinweise darauf, dass auch Zellen, die sich nicht teilen, DNA-Doppelstrangbrüche unter Zuhilfenahme von Kopien der Erbinformation reparieren. Dieser Befund ermöglicht auch Fortschritte bei Verfahren zur Gentherapie, wenn im Falle von vorliegenden Erbkrankheiten Genfehler über eingeschleuste Kopien gewissermaßen repariert werden sollen.

    Studie:
    Ronja Biehs, Monika Steinlage, Olivia Barton, Szilvia Juhász, Julia Künzel, Julian Spies, Atsushi Shibata, Penny A. Jeggo und Markus Löbrich: „DNA double-strand break resection occurs during non-homologous end-joining in G1 but is distinct from resection during homologous recombination”, in: Molecular Cell
    http://dx.doi.org/10.1016/j.molcel.2016.12.016

    Kontakt:
    Fachbereich Biologie
    Prof. Dr. Markus Löbrich
    Tel.: 06151/16-24620
    E-Mail: lobrich@bio.tu-darmstadt.de
    MI-Nr. 08/2017, Löbrich/feu


    Weitere Informationen:

    http://dx.doi.org/10.1016/j.molcel.2016.12.016 Die Veröffentlichung online


    Bilder

    Die Autorinnen der Veröffentlichung zur Reparatur von DNA-Schäden: Monika Steinlage, Szilvia Juhász und Ronja Biehs (v.l.)
    Die Autorinnen der Veröffentlichung zur Reparatur von DNA-Schäden: Monika Steinlage, Szilvia Juhász ...
    Monika Steinlage / TU Darmstadt. Veröffentlichung nur im Zusammenhang mit Berichterstattung über die im Text genannten Veröffentlichung!
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Die Autorinnen der Veröffentlichung zur Reparatur von DNA-Schäden: Monika Steinlage, Szilvia Juhász und Ronja Biehs (v.l.)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).