idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.02.2017 09:28

DNA-Forschung - Schnell und stabil: Neues Kopiersystem für DNA

Luise Dirscherl Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Für die Evolution von Zellen und Organismen ist entscheidend, dass informationstragende Moleküle wie DNA-Sequenzen kopiert werden, bevor sie degradieren. Dabei hat das Zusammenspiel von DNA-Replikatoren eine wichtige Rolle.

    In allen lebenden Organismen gibt es auf molekularer Ebene eine Arbeitsteilung: Nukleinsäuren (DNA und RNA) speichern die Information zum Aufbau von Proteinen, die wiederum verschiedene Funktionen wie etwa das Katalysieren chemischer Reaktionen übernehmen. In den letzten Jahren hat sich allerdings herausgestellt, dass insbesondere RNA diese Arbeitsteilung zu „ignorieren“ scheint und in vielen Prozessen entscheidende Funktionen übernimmt.

    Diese Vielseitigkeit der Moleküle könnte auch erklären helfen, wie das Leben seinen Anfang nahm. So können Nukleinsäuren beispielsweise das Kopieren anderer Nukleinsäuren katalysieren. Hierbei ist wichtig, dass nur Moleküle kopiert werden, deren Informationen weitergegeben werden sollen. Sogenannte Primer helfen in biologischen Prozessen oft, diese „Spezies“ zu erkennen. Das sind kurze Nukleinsäuren mit einer bestimmten Sequenz, die mit einem Teil des Moleküls, das kopiert wird, eine Doppelhelix bilden. Sie sind der Startpunkt für die Replikation und verlängern sich im weiteren Prozess zur komplementären DNA-Strang.

    Vor- und Nachteile der Haarnadel-Struktur

    Ausgehend von solch einem System haben sich Georg Urtel und Thomas Rind aus der Arbeitsgruppe von Professor. Dieter Braun (Biophysik, LMU München) gefragt, welche Eigenschaften diese DNA-Moleküle haben. In Experimenten replizierten die Wissenschaftler dazu zunächst DNA mit einer sogenannten „Hairpin-Struktur“. Bei diesen Molekülen sind einige Basen am Anfang und am Ende komplementär und bilden kurze Paarfolgen, so dass die Enden des Moleküls aneinander binden. Die Form erinnert dem Namen entsprechend an eine Haarnadel.

    Beim Kopieren eines DNA-Moleküls entsteht das in der Basenfolge dazu komplementäre Molekül, das exakte Gegenstück sozusagen, da nur immer zwei der vier verschiedenen Basen zusammenpassen. Um beide Moleküle replizieren zu können, benötigt man daher normalerweise zwei verschiedene Primer. Der Vorteil von Hairpin-Molekülen ist, dass das Ursprungsmolekül und das entsprechende Komplement den gleichen Primer benötigen. „Das macht Hairpins zu relativ simplen Replikatoren“, erklärt Georg Urtel. „Allerdings erschwert die Hairpin-Struktur das Anbinden der Primer an das DNA-Molekül und bremst die Replikationsrate. Dieses Problem haben Spezies ohne Hairpin-Struktur nicht“.

    Aus zwei mach eins

    In ihren Experimenten entdeckten die Wissenschaftler, dass durch Kooperation von zwei simplen Hairpin-Spezies ein deutlich schnellerer Replikator entsteht, der zwei Primer benötigen. Die ausgewählten Hairpin-Spezies benötigten unterschiedliche Primer, besaßen aber ansonsten teilweise identische Sequenzen. Im ersten Schritt des Übergangs muss die Replikation eines Hairpin-Moleküls unterbrochen werden. „In der Regel sind Replikationsprozesse in der Natur nie perfekt“, so Dieter Braun. „Dieses Verhalten muss man nicht erzwingen, sondern es passiert stochastisch und wir nutzen das für unsere Experimente“. Ein unfertig repliziertes Hairpin-Molekül kann nun an ein Molekül der zweiten Spezies binden und dabei wie ein Primer verlängert werden. Das so entstandene Molekül hat keine Hairpin-Struktur mehr, sondern stellt eine neue Spezies dar. Solche Crossbreeds benötigen nun zwei Primer, replizieren allerdings viel schneller.

    Vor dem Aussterben gerettet

    In den Experimenten zeigte sich, dass DNA-Moleküle mit Hairpin-Struktur im Vergleich zu Crossbreeds bei Verdünnung rasch aussterben. Durch die Bildung von Crossbreeds und die damit verbundene schnellere Replikation kann Hairpin-DNA ihre Informationen in diesen sicher abspeichern und weiter kopieren.
    Dass die Information tatsächlich erhalten bleibt, konnte durch die Umkehrreaktion gezeigt werden: Haben Crossbreeds nur einen Primer zur Verfügung, entsteht die entsprechende Hairpin-Spezies durch einen ähnlichen Übergangs-Prozess wie oben beschrieben. Weil ein Primer fehlt, stirbt nun der Crossbreed aus. „Der Crossbreeding-Prozess erlaubt also nicht nur den Übergang von simplen, langsamen Replikatoren zu schnelleren Replikatoren, sondern ermöglicht es zudem, sich an die Umweltbedingungen anzupassen“, beschreibt Georg Urtel die Vorteile. „Solch ein Prozess zeigt uns daher auch, wie zu Beginn des Lebens bereits frühe Replikatoren kooperiert haben könnten.“
    Physical Review Letters 2017

    Publikation:
    Reversible switching of cooperating replicators.
    Georg C. Urtel, Thomas Rind and Dieter Braun.
    Physical Review Letters 2017
    DOI: 10.1103/PhysRevLett.118.078102

    Kontakt:
    Prof. Dr. Dieter Braun
    LMU, Systems Biophysics
    Telefon: +49 (0) 89 / 2180-2317
    E-Mail: dieter.braun@lmu.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).