idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.03.2017 10:25

Physiker erzeugen gezielt Elektronenwirbel

Dr. Corinna Dahm-Brey Presse und Kommunikation
Carl von Ossietzky-Universität Oldenburg

    Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

    Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen Effekt adäquat gedeutet hat. Im Jahr 2015 haben theoretische Physiker vorhergesagt, dass bei der Photoionisation mit zwei entgegengesetzt zirkular polarisierten Laserpulsen – also Laserpulsen, die sich erst in die eine und dann in die entgegengesetzte Richtung drehen – ein sogenannter Elektronenwirbel entsteht. Nun lag es an den Experimentalphysikern, diesen tatsächlich zu erzeugen und abzubilden.

    Um sich dem komplexen Geschehen anzunähern, studierten die Oldenburger Experimentalphysiker der Arbeitsgruppe „Ultraschnelle kohärente Dynamik (ULTRA)“ die Vorgänge an elementaren Einheiten – in diesem Fall waren es isolierte Atome. Die Herausforderung bestand darin, die Atome mit maßgeschneiderten Sequenzen zirkular polarisierter Laserpulse zu beschießen, so dass deren Elektronen anfangen, zu rotieren – zunächst in die eine, dann in die andere Richtung. Bei der dadurch ausgelösten Ladungstrennung entstehen die Elektronenwirbel. Der gesamte Vorgang spielt sich innerhalb weniger Femtosekunden ab. Zum Vergleich: in drei Sekunden – also der Zeitspanne, die der Mensch als einen zusammenhängenden Moment wahrnimmt – vergehen etwa so viele Femtosekunden, wie Minuten seit Bestehen des Universums vergangen sind.

    Um das Geschehen so gut wie möglich zu beobachten und abzubilden, setzten die Forscher eine tomographische Methode ein, die sie erst kürzlich selbst entwickelt haben: Ähnlich wie in der medizinischen Computertomographie entstehen dabei dreidimensionale Bilder, die das komplexe Geschehen der Ladungstrennung sichtbar machten.

    „Unsere Experimente werden erst durch die Kombination modernster Hochtechnologien ermöglicht“, sagt Wollenhaupt. Der gezielt erzeugte Elektronenwirbel sei ein extremes Beispiel für Quantenkontrolle – also dem Bestreben, komplexe physikalische Vorgänge auf mikroskopischer Ebene zu beherrschen. „Wir versuchen, eine chemische Reaktion mithilfe von Lasern gezielt zu steuern. Wir wollen der Natur also nicht nur zugucken, sondern das Geschehen aktiv manipulieren“, erklärt der Wissenschaftler. Möglicherweise könnten auf Basis dieser grundlegenden Forschung eines Tages bessere Energiewandler, beispielweise effizientere Solaranlagen, gebaut werden.

    Denkbar wäre auch eine Anwendung in der Pharmazie. Hier lautet das Stichwort chirale Moleküle. Diese molekularen Zwillinge sehen sich zum Verwechseln ähnlich, verhalten sich in Reaktionen allerdings sehr unterschiedlich. So riecht der Duftstoff Carvon beispielsweise – je nachdem um welchen der beiden Zwillinge es sich handelt – entweder nach Kümmel oder nach Minze. Eine genaue Analyse, mit welcher Art man es zu tun hat, ist für die Pharmaindustrie extrem wichtig. Mithilfe der ultrakurzen Laserpulse können Forscher die verschiedenen Varianten eines chiralen Moleküls identifizieren. Das Licht löst die Abgabe von Elektronen aus. In welche Richtung diese fliegen, gibt Aufschluss darüber, um welche Variante eines chiralen Moleküls es sich handelt.


    Weitere Informationen:

    http://doi.org/10.1103/PhysRevLett.118.053003


    Bilder

    Dreidimensionale Darstellung der Elektronenwirbel. Die Wissenschaftler haben die gemessenen zweidimensionalen Bilder mithilfe einer eigenen tomographischen Methode zu einem 3D-Bild zusammengefügt.
    Dreidimensionale Darstellung der Elektronenwirbel. Die Wissenschaftler haben die gemessenen zweidime ...
    Universität Oldenburg
    None

    Einblick in das Femtosekundenlabor.
    Einblick in das Femtosekundenlabor.

    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Dreidimensionale Darstellung der Elektronenwirbel. Die Wissenschaftler haben die gemessenen zweidimensionalen Bilder mithilfe einer eigenen tomographischen Methode zu einem 3D-Bild zusammengefügt.


    Zum Download

    x

    Einblick in das Femtosekundenlabor.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).