idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.03.2017 15:16

Flipper auf atomarem Niveau

Dr. Joerg Harms Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    Wissenschaftler des MPI für Struktur und Dynamik der Materie (MPSD) am CFEL (Center for Free-Electron Lase Science) in Hamburg und von der Universität Edinburgh haben für die Photodissoziation von Triiodid-Anionen (einer klassische Lehrbuchreaktion.) einen neuen Zwischenzustand entdeckt.

    Die Photodissoziation von Triiodid Anionen ([I₃]⁻) ist eine klassische Lehrbuchreaktion, die sowohl in Lösung als auch in der Gasphase umfassend untersucht wurde. Das Sondieren der ultraschnellen Dynamik dieser Reaktion im festen Zustand war jedoch aufgrund der partiellen Reversibilität der Reaktion und ihrer Empfindlichkeit gegenüber experimentellen Bedingungen als schwierig erachtet worden. Ein Team von Wissenschaftlern des MPSD am CFEL in Hamburg und der Universität Edinburgh haben jetzt durch ein verbessertes Probenhandling ein neues Reaktionszwischenprodukt entdeckt, das Tetraiodidradikalanion ([I₄]• ⁻), welches als Ergebnis der eindeutigen Ordnung von [I₃]⁻ im Kristallgitter gebildet wurde, um das dissoziierende Jod-Atom zu leiten, - in einem Prozeß der an eine Newtonsche Wiege in Quantengröße erinnert. Die Ergebnisse sind jetzt in Nature Chemistry veröffentlicht.

    In Lösung dissoziieren die Triiodidanionen überwiegend in Iodradikal ([I]•) und Diiodid ([I₂]•⁻) Radikale. Das umliegende Lösungsmittel spielt bei der Trägheitsbegrenzung der Reaktionsprodukte eine passive Rolle, die letztlich einer geminaten und nicht-geminaten Rekombination unterliegen. In dem geordneten Ionengitter der Tetra-n-butylammonium-Triiodid-Kristallen wurde im Gegensatz dazu ein dramatisch unterschiedliches Verhalten gefunden. Hierbei beschränkt die lokale Geometrie die Reaktion und damit wird das primäre Photoprodukt, Iodradikal ([I]•), durch das Gitter geführt, um eine Bindung mit einem benachbarten ([I₃]⁻), zu bilden, was zu einem sekundären Reaktionsprodukt dem Tetraiodid-Radikal-Anion ([I₄]• ⁻) führt, was bisher nicht für diese Reaktion beschrieben wurde. Wie in der Abbildung gezeigt, sind die Reaktanten buchstäblich in dem Gitter ausgerichtet um dieses Vier-Atom-Zwischenprodukt zu bilden. "Die dissoziierten Iodatome kollidieren in einer Newtonschen Wiege (einfaches Kugelstoßpendel) in Quanten Dimension mit anderen Triiodidmolekülen, um dieses neuartige Reaktionsprodukt zu bilden", erklärt Dwayne Miller, und er fügt hinzu: " Am wichtigsten ist, dass wir gezeigt haben, dass das Gitter den Reaktionsweg der Festkörper-Photochemie kohärent auf Femto- bis Pikosekunden-Zeitskalen leitet."

    Dieses Phänomen konnte nur dank neuer Proben-, Datenerfassungs- und Analysetechniken die am MPSD in Hamburg entwickelt wurden, sowie theoretische Berechnungen, durchgeführt an der Universität Edinburgh, beobachtet werden, um die elektronischen und vibrierenden Zuordnungen der verschiedenen Reaktionsteilnehmer zu unterstützen, die bislang die detaillierteste Auflösung der Reaktionszwischenstufen sowie die kohärenten Modi, welche die Triiodid-Photodissoziationsreaktion treiben, ermöglichten.
    "Diese Beobachtungen bieten einen anderen konzeptionellen Rahmen um über Reaktionsprozesse nachzudenken und können einen Weg zeigen, wie man chemische Systeme an ein Bad als Mittel zur Erhöhung der Längenskalen unter chemischer Kontrolle koppelt ", schließt Miller ab.


    Weitere Informationen:

    http://www.mpsd.mpg.de/en/research/ard/ard - Webseite der Forschung von Prof. Miller
    https://dx.doi.org/10.1038/nchem.2751 - Original Publikation bei Nature Chemistry


    Bilder

    Darstellung der Photodissoziation von Triiodid, initiiert durch einen Laserpuls und die sekundäre Reaktion, die zu dem neuen 4-Atom-Zwischenprodukt führt, gefolgt von der Rekombinationsreaktion.
    Darstellung der Photodissoziation von Triiodid, initiiert durch einen Laserpuls und die sekundäre Re ...
    Bild aus R. Xian et al. Nat. Chem. (2017), DOI: 10.1038/nchem.2751
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Darstellung der Photodissoziation von Triiodid, initiiert durch einen Laserpuls und die sekundäre Reaktion, die zu dem neuen 4-Atom-Zwischenprodukt führt, gefolgt von der Rekombinationsreaktion.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).