idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.07.2017 00:12

Topologische Quantenchemie

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    Wissenschaftler haben einen neuen Weg gefunden um topologische Materialien zu identifizieren - wichtig für zukünftige vielfältige Anwendungen.

    Ein internationales Team von Wissenschaftlern hat eine neue Methode entwickelt, um aus allen existierenden und noch zu synthetisierenden Materialien die topologisch interessanten Materialien zu identifizieren. Das Ergebnis, veröffentlicht am 20. Juli in „Nature“, zeigt, dass topologische Materialien viel häufiger in der Natur auftreten als bisher gedacht.

    Topologische Materialien lassen viele interessante technologische Anwendungen aufgrund ihrer exotischen Eigenschaften erwarten. Die Materialien stehen schon seit zehn Jahren im Mittelpunkt des Interesses von theoretischen und experimentellen Physikern und Materialwissenschaftlern, und der Physik-Nobelpreis 2016 für Topologie bildete den vorläufigen Höhepunkt. Zu den ungewöhnlichen Eigenschaften gehören Elektronen in der Oberfläche, die ohne Widerstand fließen und Eigenschaften, die überraschend anders als normale Materialien auf elektrische und magnetische Eigenschaften reagieren, wünschenswerte Eigenschaften für zukünftige Elektronik.

    Bis heute wurden neue topologische Materialien meist nach dem „Versuch und Irrtum“ - Prinzip identifiziert. Der neue Ansatz erlaubt die gleichzeitige Identifizierung ganzer Serien topologischer Materialien. Die Arbeit präsentiert nicht nur einen fundamentalen Fortschritt in der Physik, sondern ändert auch Art des Verständnisses der topologischen Materialien.

    Das Autorenteam besteht aus Wissenschaftlern der Princeton Universität, USA (Barry Bradlyn, Jennifer Cano, Zhijun Wang und B. Andrei Bernevig, verantwortlicher Autor), der Universität Bilbao (Luis Elcoro und Mois Aroyo), dem Donostia International Physics Center (Maia Garcia Vergniory), Spanien, und dem Max Planck Institut für Chemische Physik fester Stoffe, Dresden (Claudia Felser).

    "Unser Ansatz macht es viel einfacher, neue topologische Materialien ohne detaillierte Berechnungen zu finden.“ sagt Felser, und Bradley ergänzt: „In machen Kristallstrukturen ist es sogar egal, ob das Material ein Halbleiter oder Metall ist, es ist auf jeden Fall topologisch interessant.“

    Bis heute sind etwa 200.000 Materialien in den Datenbanken katalogisiert und nur etwa Hundert wurden schon als topologisch relevante Materialien identifiziert. Das wirft die Frage auf: „Sind topologische Materialien wirklich so selten oder fehlt uns bis heute einfach das vollständige Verständnis?" fragt Cano.

    Elektronen in einen Festkörper befinden sich in bestimmten Energieniveaus, bekannt als Bänder, basierend auf einer fast ein Jahrhundert alten Theorie von Felix Bloch. Sind alle Bänder gefüllt, können sich die Elektronen nicht bewegen, das Material ist ein Isolator. Sind die Bänder nur teilweise gefüllt, leitet das Material den Strom, da sich die Elektronen von Atom zu Atom bewegen können.

    Allerdings hat jeder Kristall eine bestimmte Symmetrie, die sich in der Form des Kristalls widerspiegelt (z.B. sind Diamantkristalle kubisch oder oktaedrisch) und auch in der Symmetrie der Quantenzustände, in denen sich die Elektronen befinden. Diese Symmetrie des Kristalls spiegelt sich in vielen Quanteneigenschaften des Materials wider, so bestimmt die Kristallsymmetrie auch die Symmetrie der Bänder, wie diese verbunden werden etc. Für alle möglichen potentiellen Kristallstrukturen, das heißt für alle bekannten und in der Zukunft zu synthetisierenden Materialien lassen sich diese Bandstrukturen mit Gruppen- und graphentheoretischen Konzepten unter Beachtung der elektronischen Orbitale und der Positionen der Atome im Kristall herstellen. Schließlich lassen sich die nicht topologischen Bandstrukturen aussortieren.

    Als Ergebnis dieser systematischen Untersuchungen wurden zahlreiche Materialfamilien identifiziert, die topologische Materialien beinhalten. In diesen Materialien können sich Elektronen auf den Oberflächen oder den Kanten der Kristalle ohne Widerstand bewegen. Diese neue Forschungsrichtung bringt in fundamentaler Weise verschiedene Forschungsfelder wie Chemie, Mathematik, Materialwissenschaften und Physik zusammen. Stuart Parkin, Max-Planck-Institut für Mikrostrukturphysik in Halle und Milleniumspreisträger sagt, „Die Geschwindigkeit, mit der heute neue Materialien entdeckt werden und insbesondere topologische Materialien, ist essentiell für energieeffiziente Elektronik der Zukunft wie Spinelektronik und für Quantencomputer.“ Claudia Felser ergänzt: „Ich bin überzeugt, dass die topologischen Eigenschaften auch für die Chemie interessant sind, so sind topologische Materialien gute Thermoelektrika und auch in der Katalyse eventuell relevant."

    Außerdem werden die neuen Erkenntnisse über den kristallographischen Bilbao Server allen Wissenschaftlern zugänglich gemacht (http://www.cryst.ehu.es/). "Mit Hilfe der Webseite und den publizierten Erkenntnissen kann jeder Wissenschaftler nun schnell herausfinden, ob das neue Material topologische Eigenschaften aufweist," sagt Elcoro.

    “Unsere Forschungsergebnisse zeigen beeindruckend, dass Symmetrie, Topologie, Chemie und Physik eine fundamentale Rolle für das Verständnis von Materialien spielen,“ sagt Bernevig, der verantwortliche Autor. „Die neue Theorie verbindet zwei neue Ingredienzen, die Bandtopologie mit der Orbitalhybridisierung eingebettet in die fast 100 Jahre alte Bloch-Theorie und öffnet einen neuen Pfad zur Entdeckung neuer Metalle und Isolatoren mit topologischen Eigenschaften “

    Die Studie, "Topological quantum chemistry," von Barry Bradlyn, Luis Elcoro, Jennifer Cano, Maia Garcia Vergniory, Zhijun Wang, Claudia Felser, Mois Aroyo and B. Andrei Bernevig, wurde in „Nature“ am 20. Juli 2017 publiziert. Doi:10.1038/nature23268

    Author contact:
    Claudia Felser, MPI CPfS
    B. Andrei Bernevig, Princeton University


    Weitere Informationen:

    http://www.cpfs.mpg.de/solid_state_chemistry
    https://www.princeton.edu/physics/people/display_person.xml?netid=bernevig


    Bilder

    Titelseite Nature vom 20. Juli 2017
    Titelseite Nature vom 20. Juli 2017
    Nature / Illustration by JVG
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende
    Chemie, Elektrotechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Titelseite Nature vom 20. Juli 2017


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).