idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.08.2017 11:06

Kohlenstoff-Transporte ins Erdinnere: Bayreuther Forscher entdecken hochstabile Carbonat-Strukturen

Christian Wißler Mediendienst Forschung
Universität Bayreuth

    Wie gelangt Kohlenstoff von der Erdoberfläche bis tief ins Erdinnere? Dieser Transportweg, der einen zentralen Abschnitt im Kohlenstoffkreislauf der Erde darstellt, galt bisher als rätselhaft. Forscher der Universität Bayreuth haben jetzt zusammen mit internationalen Partnern Licht in dieses Dunkel bringen können. In Nature Communications berichten sie über Kristallstrukturen von Eisencarbonat, die in rund 2.000 Kilometer Tiefe unter sehr hohen Drücken und Temperaturen entstehen. Dabei kommt es zu einer starken Oxidation des im Eisencarbonat enthaltenen Eisens. Die neuen, außerordentlich stabilen Strukturen machen es möglich, dass Kohlenstoff noch tiefer ins Erdinnere transportiert wird.

    Die Geoforschung vermutet, dass rund 90 Prozent des Kohlenstoffs der Erde tief im Erdinnern lagern. Von dort steigt Kohlenstoff über den oberen Erdmantel bis in die Erdkruste und weiter in die Atmosphäre auf, und umgekehrt wandert Kohlenstoff von hier bis tief ins Erdinnere hinab. Während dieses globalen Kreislaufs sind die Kohlenstoffatome Bestandteile der unterschiedlichsten Gase und Mineralien, die auf ihren Transportwegen eine Vielzahl chemischer Reaktionen und Umformungsprozesse durchlaufen. Welche Prozesse an dem langen Transportweg bis in die Tiefen des unteren Erdmantels beteiligt sind, haben Wissenschaftler am Bayerischen Geoinstitut (BGI) der Universität Bayreuth nun am Beispiel des Eisencarbonats (FeCO₃) untersucht.

    Proben dieses Minerals wurden im Labor den Bedingungen ausgesetzt, die in rund 700 Kilometern unter der Erdoberfläche und in noch tieferen Bereichen des Erdinnern herrschen. Diamantstempelzellen erzeugten einen Druck von bis zu 100 Gigapascal – dies ist ungefähr der 1-millionenfache Druck der Erdatmosphäre. Zeitgleich erhitzte ein Laserstrahl die Proben bis zu etwa 3.000 Grad Celsius. Unter diesen Bedingungen unterzogen die Wissenschaftler die Proben einer intensiven Bestrahlung mit Röntgenlicht. Die dabei entstehenden Beugungsmuster zeigten, wie sich die Kristallstrukturen des Eisencarbonats veränderten. „Es hat sich herausgestellt, dass die Kohlenstoff- und Sauerstoffatome im unteren Erdmantels neue kristalline Strukturen annehmen. Sie ordnen sich in Tetraedern an – in Strukturen, wie wir sie von Silizium- und Sauerstoffatomen in Mineralien an der Erdoberfläche kennen“, erklärt Dr. Catherine McCammon vom BGI. Wie die Experimente ergaben, verleihen die neuen Strukturen dem Eisencarbonat eine außergewöhnliche Stabilität. Die Kohlenstoffatome bleiben darin eingeschlossen, wenn das Mineral noch tiefer in den unteren Erdmantel absinkt.

    Die Wissenschaftler berichten noch über eine weitere Entdeckung. Unter den sehr hohen Drücken und Temperaturen des unteren Erdmantels setzt eine starke Oxidation des im Eisencarbonat enthaltenen Eisens ein. „An der Erdoberfläche würden solche Oxidationsprozesse zum Beispiel den gesamten Stahl eines Automobils in kürzester Zeit komplett in Rost verwandeln“, erläutert Dr. McCammon.

    Die in Nature Communications veröffentlichten Ergebnisse sind aus einer engen internationalen Kooperation hervorgegangen. Zusammen mit dem Bayerischen Geoinstitut haben folgende Partnereinrichtungen daran mitgewirkt: die European Synchrotron Radiation Facility (ESRF) in Grenoble, das Argonne National Laboratory an der Universität Chicago und die Universität Mailand. Dem Team am Bayerischen Geoinstitut gehörten an: Erstautor Dr.Valerio Cerantola, Dr. Elena Bykova, Dr. Maxim Bykov, Dr. Leyla Ismailova, Dr. Sylvain Petitgirard, Dr. Catherine McCammon und Prof. Dr. Leonid Dubrovinsky, der die Forschungsarbeiten koordiniert hat.

    Veröffentlichung:

    Valerio Cerantola et al., Stability of iron-bearing carbonates in the deep Earth’s interior, Nature Communications (2017), DOI: 10.1038/ncomms15960.

    Kontakte:

    Prof. Dr. Catherine McCammon
    Bayerisches Geoinstitut (BGI)
    Universität Bayreuth
    95447 Bayreuth
    Tel.: +49 (0)921 55-3709
    E-Mail: Catherine.McCammon@uni-bayreuth.de


    Bilder

    Kristallstrukturen des Eisenkarbonats: An der Erdoberfläche sind Kohlenstoffatome (schwarz) und Sauerstoffatome (rot) in Dreiecken angeordnet, tief im Erdinnern gruppieren sie sich zu Tetraedern um.
    Kristallstrukturen des Eisenkarbonats: An der Erdoberfläche sind Kohlenstoffatome (schwarz) und Saue ...
    Abbildung: Catherine McCammon.
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
    Geowissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Kristallstrukturen des Eisenkarbonats: An der Erdoberfläche sind Kohlenstoffatome (schwarz) und Sauerstoffatome (rot) in Dreiecken angeordnet, tief im Erdinnern gruppieren sie sich zu Tetraedern um.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).