idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.10.2017 18:34

Climate change weakens Walker circulation

Ulrike Prange Pressestelle
MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

    Data from the last glacial period confirm prognosis

    Strong rains that produce flooding on one extreme, and droughts on the other, influence the lives of millions of people in tropical regions. Dr. Mahyar Mohtadi of MARUM, the Center for Marine Environmental Sciences at the University of Bremen, with a team of scientific colleagues, has studied how the atmospheric water cycle could develop in the future. Their results are published in the journal Nature Communications.

    A global system of winds and ocean currents influences climate. Walker circulation, named after its discoverer, the English physicist Sir Gilbert Thomas Walker (1868-1958), plays an important role along the equator. It constitutes an atmospheric water cycle. As a result of high water temperatures, averaging 28.5 degrees Celsius, humid air masses rise above the Indonesian archipelago. In the upper atmosphere, these split to feed two different cycles: one part flows eastward toward South America and the other westward toward Africa. The rising air masses result in the formation of a low-pressure area over Indonesia, which is responsible for the wet climate there. In contrast, off the coasts of Africa and South America, high-pressure systems develop because the air masses here descend and suppress cloud formation. These areas, therefore, usually have sparse rainfall.

    How do climate changes impact climate systems?

    In the present study, the researchers Mahyar Mohtadi, Matthias Prange, Enno Schefuß and Tim C. Jennerjahn, from MARUM, the Center for Marine Environmental Sciences of the University of Bremen and the Leibniz Centre for Tropical Marine Research in Bremen, have analyzed the effects of increasing temperature on the Walker circulation. In order to understand these changes it is helpful to consider a period in Earth’s history when the average temperatures were colder. “That is why we have compared conditions during the last glacial period at about 20,000 years ago with the warmer conditions of the last 3,000 years,” says Mohtadi. Scientists use weather records applied through mathematical models to make predictions of climate in the coming decades. It is often not sufficient to analyze only the directly measured weather data from the 20th century, because the observed changes are not comprehensive enough to provide a complete picture. For this reason, paleoclimatologists have to look further back in time. They use sea-floor deposits, which, like the rings in a tree trunk, record climate conditions in a kind of archive.

    New knowledge thanks to the combination of various data and models

    “Previous prognoses for the future suggest that the intensity of Walker circulation will decline as the Earth becomes warmer. The weakened circulation will result in more rain over East Africa and less rain over Southeast Asia,” explains Mohtadi. The rain would have disastrous consequences, however, because it would cause extensive flooding instead of a fertile climate for East Africa. A glimpse into the past, where cold and warm periods have alternated with increased or diminished circulation, would help to verify whether the theory of the climate researchers is correct. “As far as Walker circulation is concerned, it is correct,” concludes Mohtadi.

    Mahyar Mohtadi, Matthias Prange, Enno Schefuß and Tim C. Jennerjahn combined different data sets and climate models. They included data from sediment cores off the coast of Indonesia, satellite data and measurement series, as well as a number of different climate models in which water temperatures on the sea surface are compared to those at greater depths. Further evidence was provided by plant remains in the sediments that reveal changes in precipitation through the past. Mahyar Mohtadi considers the quality of these combined data to be very high. “We have analyzed various indicators from the glacial period and compared them to those from today – it provides a robust signal.”

    Contact:
    Dr. Mahyar Mohtadi
    Telephone: 0421-218 65660
    Email: mmohtadi@marum.de

    Original publication:
    Mahyar Mohtadi, Matthias Prange, Enno Schefuß, Tim C. Jennerjahn: Late Holocene slowdown of the Indian Ocean Walker circulation. Nature Communications. DOI: 10.1038/s41467-017-00855-3

    Partiticipating institutes:
    MARUM – Center for Marine Environmental Sciences, University of Bremen
    Leibniz Centre for Tropical Marine Research (ZMT), Bremen

    Further information / photo material:
    Ulrike Prange
    MARUM public relations
    Email: uprange@marum.de

    MARUM, using state-of-the-art methods and through participation in international projects, investigates the role of the ocean in the Earth’s system, particularly with respect to global change. It quantifies the interactions between geological and biological processes in the ocean and contributes to the sustainable use of the oceans. MARUM comprises the DFG Research Centre and the Excellence Cluster “The Oceans in the Earth System.”
    (5590 characters)


    Bilder

    With the help of a device called a CTD rosette, scientists can takes samples from the water column and measure water parameters such as salinity, temperature, oxygen content and particle density.
    With the help of a device called a CTD rosette, scientists can takes samples from the water column a ...
    Photo: MARUM – Center for Marine Environmental Sciences, University of Bremen
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Geowissenschaften
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    With the help of a device called a CTD rosette, scientists can takes samples from the water column and measure water parameters such as salinity, temperature, oxygen content and particle density.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).