idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.12.2017 09:21

Wasserstoffproduktion: Proteinumfeld macht Katalysator effizient

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Das Zusammenspiel von Proteinhülle und aktivem Zentrum in Wasserstoff produzierenden Enzymen ist entscheidend für die Effizienz der Biokatalysatoren. Ein Team der Ruhr-Universität Bochum und des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr analysierte speziell die Rolle von Wasserstoffbrückenbindungen in bestimmten Enzymen aus Grünalgen, den Hydrogenasen. Die Gruppen, die im Exzellenzcluster Resolv kooperieren, berichteten die Ergebnisse im „Journal of the American Chemical Society“.

„Die Erkenntnisse tragen nicht nur zum Verständnis dieser weltweit beachteten Biokatalysatorgruppe bei, sondern geben der angewandten Forschung zusätzlich wichtige Hinweise für die Entwicklung chemischer Katalysatoren nach Vorbild des hochaktiven Biomoleküls“, sagt Dr. Martin Winkler von der Bochumer Arbeitsgruppe Photobiotechnologie.

Leistungsfähigste Biokatalysatoren

Die Forscher untersuchten einen speziellen Typ von Hydrogenasen, sogenannte [FeFe]-Hydrogenasen. Sie bestehen aus einem Proteingerüst und einem aktiven Zentrum, H-Cluster genannt. Letzterer besteht aus sechs Eisen- und sechs Schwefelatomen sowie aus sechs ungewöhnlichen Bausteinen. Er bildet den Ort, an dem die eigentliche Wasserstoffsynthese aus Protonen und Elektronen stattfindet. „[FeFe]-Hydrogenasen gehören zu den leistungsfähigsten Biokatalysatoren überhaupt“, erklärt Prof. Dr. Thomas Happe, Leiter der Arbeitsgruppe Photobiotechnologie. Die Kommunikation zwischen H-Cluster und Proteinumgebung spielt dabei eine entscheidende Rolle.

Sie hilft bei der gezielten Anlieferung der Ausgangsstoffe für die Synthese und beim effizienten Abtransport des Produkts. „Außerdem sorgt die Proteinhülle für eine optimale räumliche Ausrichtung des H-Clusters und schützt ihn vor schädigenden Einflüssen“, ergänzt Oliver Lampret, der seine Doktorarbeit zu diesem Thema schreibt.

Manipulation der Wasserstoffbrücken

Die Bochumer Gruppe und ihre Mülheimer Kollegen Dr. Agnieszka Adamska-Venkatesh, Dr. Olaf Rüdiger und Prof. Dr. Wolfgang Lubitz zeigten, dass die Wasserstoffbrückenbindungen zwischen H-Cluster und Proteinumfeld die elektrochemischen Eigenschaften des aktiven Enzymzentrums maßgeblich beeinflussen. Sie entfernten einzelne Wasserstoffbrücken oder fügten zusätzliche hinzu und untersuchten die Effekte.

Die Manipulation veränderte sowohl die Elektronentransporteigenschaften des Enzyms als auch die katalytische Richtung, in die es arbeitet; denn Hydrogenasen können sowohl Wasserstoff produzieren als auch die umgekehrte Reaktion katalysieren, also die Spaltung von Wasserstoff in Protonen und Elektronen.

Den Einfluss der Wasserstoffbrücken belegten die Wissenschaftler mit drei verschiedenen Methoden: spektroskopisch, elektrochemisch und enzymkinetisch.

Förderung

Die Arbeiten wurden unterstützt von der Max-Planck-Gesellschaft, der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069), der Deutsch-Israelischen Projektkooperation im Rahmen des Projekts „Nanoengineered Optobioelectronics with Biomaterials and Bioinspired Assemblies“ sowie der Volkswagen-Stiftung (LigH2t).

Originalveröffentlichung

Oliver Lampret, Agnieszka Adamska-Venkatesh, Hannes Konegger, Florian Wittkamp, Ulf-Peter Apfel, Edward J. Reijerse, Wolfgang Lubitz, Olaf Rüdiger, Thomas Happe, Martin Winkler: Interplay between CN– ligands and the secondary coordination sphere of the H-cluster in [FeFe]-hydrogenases, Journal of the American Chemical Society, 2017, DOI: 10.1021/jacs.7b08735

Pressekontakt

Prof. Dr. Thomas Happe
Arbeitsgruppe Photobiotechnologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27026
E-Mail: thomas.happe@rub.de

Dr. Martin Winkler
Arbeitsgruppe Photobiotechnologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27049
E-Mail: martin.winkler-2@rub.de

Dr. Olaf Rüdiger
Abteilung Anorganische Spektroskopie
Max-Planck-Institut für Chemische Energiekonversion Mülheim an der Ruhr
Tel.: 0208 306 3526
E-Mail: olaf.ruediger@cec.mpg.de


Bilder

Die Bochumer Forscher Martin Winkler, Olaf Lampret und Thomas Happe (von links nach rechts) gemeinsam mit Olaf Rüdiger (Mitte hinten) vom Max-Planck-Institut
Die Bochumer Forscher Martin Winkler, Olaf Lampret und Thomas Happe (von links nach rechts) gemeinsa ...
© RUB, Marquard
None

Martin Winkler (links) und Olaf Rüdiger (rechts)
Martin Winkler (links) und Olaf Rüdiger (rechts)
© RUB, Marquard
None


Ergänzung vom 14.12.2017

Die Bildunterschrift zum Viererporträt enthält einen Fehler: Der Erstautor der Studie, der mit der Gruppe abgebildet ist, heißt Oliver Lampret, nicht Olaf Lampret.


Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Die Bochumer Forscher Martin Winkler, Olaf Lampret und Thomas Happe (von links nach rechts) gemeinsam mit Olaf Rüdiger (Mitte hinten) vom Max-Planck-Institut


Zum Download

x

Martin Winkler (links) und Olaf Rüdiger (rechts)


Zum Download

x

Hilfe

Die Suche / Erweiterte Suche im idw-Archiv
Verknüpfungen

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

Klammern

Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

Wortgruppen

Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

Auswahlkriterien

Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).