idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.12.2017 19:00

Inflammation Drives Progression of Alzheimer’s

Johannes Seiler Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    According to a study by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn now published in the journal “Nature”, inflammatory mechanisms caused by the brain’s immune system drive the progression of Alzheimer’s disease. These findings, which rely on a series of laboratory experiments, provide new insights into pathogenetic mechanisms that are believed to hold potential for tackling Alzheimer’s before symptoms manifest. The researchers envision that one day this may lead to new ways of treatment. Further institutions both from Europe and the US also contributed to the current results. EMBARGOED: Do not publish before 19:00 Central European Time!

    Alzheimer’s disease is a devastating neurodegenerative condition ultimately leading to dementia. An effective treatment does not yet exist. The disease is associated with the aberrant aggregation of small proteins called “Amyloid-beta” (Aß) that accumulate in the brain and appear to harm neurons. In recent years, studies revealed that deposits of Aß, known as “plaques”, trigger inflammatory mechanisms by the brain’s innate immune system. However, the precise processes that lead to neurodegeneration and progression of pathology have thus far not been fully understood.

    “Deposition and spreading of Aβ pathology likely precede the appearance of clinical symptoms such as memory problems by decades. Therefore, a better understanding of these processes might be a key for novel therapeutic approaches. Such treatments would target Alzheimer’s at an early stage, before cognitive deficits manifest,” says Prof. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University of Bonn.

    An Inflammatory Cascade

    Prof. Heneka, who is also involved in the cluster of excellence “ImmunoSensation” at the University of Bonn, and coworkers have been investigating the role of the brain’s immune response in the progression of Aβ pathology for some time already. Previous work by the group that was published in Nature in 2013, had established that the molecular complex NLRP3, which is an innate immune sensor, is activated in brains of Alzheimer’s patients and contributes to the pathogenesis of Alzheimer’s in the murine model. NLRP3 is a so-called inflammasome that triggers production of highly pro-inflammatory cytokines. Furthermore, upon activation, NLRP3 forms large signaling complexes with the adapter protein ASC, which are called “ASC specks” that can be released from cells. “The release of ASC specks from activated cells has so far only been documented in macrophages and their relevance in disease processes has so far remained a mystery,” says Prof. Eicke Latz, director of the Institute of Innate Immunity and member of the cluster of excellence “ImmunoSensation” at the University of Bonn

    Connection between Inflammation and Neurodegeneration

    In the current study, it was demonstrated that ASC specks are also released from activated immune cells in the brain, the “microglia”. Moreover, the findings provide a direct molecular link to classical hallmarks of neurodegeneration. “We found that ASC specks bind to Aß in the extracellular space and promote aggregation of Aß, thus directly linking innate immune activation with the progression of pathology,“ Heneka says.

    Novel Approach for Therapy?

    This view is supported by a series of experiments in mouse models of Alzheimer’s disease. In these, the researchers investigated the effects of ASC specks and its component, the ACS protein, on the spreading of Aβ deposits in the brain.

    “Additionally, analysis of human brain material indicates at several levels that inflammation and Aβ pathology may interact in a similar fashion in humans. Together our findings suggest that brain inflammation is not just a bystander phenomenon, but a strong contributor to disease progression,” Heneka says. “Therefore, targeting this immune response will be a novel treatment modality for Alzheimer’s.”

    Publication: “Microglia-derived ASC specks cross-seed ß-amyloid in Alzheimer’s disease”, Carmen Venegas, Sathish Kumar et al., Nature (2017), DOI: 10.1038/nature25158

    Media Relations

    Dr. Marcus Neitzert
    DZNE, Media Relations
    Phone: +49 228 43302-267
    Email: marcus.neitzert@dzne.de

    Johannes Seiler
    University of Bonn, Press and PR
    Phone: +49 228 73-4728
    Email: j.seiler@uni-bonn.de


    Bilder

    Inflammatory proteins (called “ASC specks”, red)  within the nucleus of an aggregate of Amyloid-beta peptides (blue). Furthermore, immune cells (green) are shown.
    Inflammatory proteins (called “ASC specks”, red) within the nucleus of an aggregate of Amyloid-beta ...
    (c) Dario Tejera/Uni Bonn
    None

    Prof. Dr. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University of Bonn.
    Prof. Dr. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodeg ...
    (c) Photo: UKB/UKOM
    None


    Anhang
    attachment icon Logo DZNE

    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Inflammatory proteins (called “ASC specks”, red) within the nucleus of an aggregate of Amyloid-beta peptides (blue). Furthermore, immune cells (green) are shown.


    Zum Download

    x

    Prof. Dr. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University of Bonn.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).