idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.01.2018 09:00

Drones learn to navigate autonomously by imitating cars and bicycles

Melanie Nyfeler Kommunikation
Universität Zürich

    Developed by UZH researchers, the algorithm DroNet allows drones to fly completely by themselves through the streets of a city and in indoor environments. Therefore, the algorithm had to learn traffic rules and adapt training examples from cyclists and car drivers.

    All today’s commercial drones use GPS, which works fine above building roofs and in high altitudes. But what, when the drones have to navigate autonomously at low altitude among tall buildings or in the dense, unstructured city streets with cars, cyclists or pedestrians suddenly crossing their way? Until now, commercial drones are not able to quickly react to such unforeseen events.

    Integrate autonomously navigating drones

    Researchers of the University of Zurich and the National Centre of Competence in Research NCCR Robotics developed DroNet, an algorithm that can safely drive a drone through the streets of a city. Designed as a fast 8-layers residual network, it produces two outputs for each single input image: a steering angle to keep the drone navigating while avoiding obstacles, and a collision probability to let the drone recognise dangerous situations and promptly react to them. “DroNet recognises static and dynamic obstacles and can slow down to avoid crashing into them. With this algorithm we have taken a step forward towards integrating autonomously navigating drones into our everyday life”, says Davide Scaramuzza, Professor for Robotics and Perception at the University of Zurich.

    Powerful artificial intelligence algorithm

    Instead of relying on sophisticated sensors, the drone developed by Swiss researchers uses a normal camera like that of every smartphone, and a very powerful artificial intelligence algorithm to interpret the scene it observes and react accordingly. The algorithm consists of a so-called Deep Neural Network. “This is a computer algorithm that learns to solve complex tasks from a set of ‘training examples’ that show the drone how to do certain things and cope with some difficult situ-ations, much like children learn from their parents or teachers”, says Prof. Scaramuzza.

    Cars and bicycles are the drones’ teachers

    One of the most difficult challenges in Deep Learning is to collect several thousand ‘training examples’. To gain enough data to train their algorithms, Prof. Scaramuzza and his team collected data from cars and bicycles, that were driving in urban environments. By imitating them, the drone automatically learned to respect the safety rules, such as “How follow the street without crossing into the oncoming lane”, and “How to stop when obstacles like pedestrians, construction works, or other vehicles, block their ways”. Even more interestingly, the research-ers showed that their drones learned to not only navigate through city streets, but also in completely different environments, where they were never taught to do so. Indeed, the drones learned to fly autonomously in indoor environments, such as parking lots and office’s corridors.

    Toward fully autonomous drones

    This research opens potential for monitoring and surveillance or parcel delivery in cluttered city streets as well as rescue operations in disastered urban areas. Nevertheless, the research team warns from exaggerated expectations of what lightweight, cheap drones can do. “Many technological issues must still be overcome before the most ambitious applications can become reality,” says PhD Student Antonio Loquercio.

    Literature:
    Antonio Loquercio, Ana Isabel Maqueda, Carlos Roberto del Blanco, and Davide Scaramuz-za. DroNet: Learning to Fly by Driving. IEEE Robotics and Automation Letters, 22. January 22, 2018. DOI: 10.1109/LRA.2018.2795643

    Paper, video, and research page: http://rpg.ifi.uzh.ch/dronet.html

    Contact:
    Prof. Dr. Davide Scaramuzza
    University of Zurich
    Director of the Robotics and Perception Group
    Tel: +41 44 635 24 07
    E-Mail: press.scaramuzza@ifi.uzh.ch


    Weitere Informationen:

    http://www.media.uzh.ch/en/Press-Releases/2018/DroNet_drone.html


    Bilder

    By imitating cars and bycicles, the drone automatically learned to respect the safety rules.
    By imitating cars and bycicles, the drone automatically learned to respect the safety rules.
    UZH
    None

    http://rpg.ifi.uzh.ch/dronet.html
    http://rpg.ifi.uzh.ch/dronet.html
    UZH
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Elektrotechnik, Informationstechnik, Maschinenbau, Verkehr / Transport
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Englisch


     

    By imitating cars and bycicles, the drone automatically learned to respect the safety rules.


    Zum Download

    x

    http://rpg.ifi.uzh.ch/dronet.html


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).