idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Medienpartner:
Wissenschaftsjahr


Teilen: 
02.02.2018 13:28

Nanoschalter in der Zelle

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Ein Team mit Freiburger Forschenden hat einen neuen Mechanismus zur Regulation der Proteinsynthese entdeckt

    Mitochondrien, am besten bekannt für ihre Rolle als Zellkraftwerke, erfüllen viele lebensnotwendige Aufgaben in der Zelle. In den Mitochondrien können im Rahmen der Zellatmung reaktive Sauerstoffspezies entstehen. Wenn diese im Übermaß vorhanden sind, führen sie aufgrund ihrer hohen Reaktivität zu irreparablen Schädigungen wichtiger Zellbestandteile. Dieser so genannte oxidative Stress steht bei vielen Krankheiten und auch bei Alterungsprozessen im Verdacht, eine ursächliche Rolle zu spielen. In niedrigen Konzentrationen können reaktive Sauerstoffspezies jedoch in der Zelle auch als wichtige Botenstoffe fungieren. Dabei werden spezifische, so genannte redox-aktive Thiole in bestimmten Proteinen modifiziert. Diese Form der oxidativen Modifikation ist umkehrbar und kann wie ein Nanoschalter die Funktion eines Proteins regulieren.

    Ein deutsch-polnisches Forschungsteam um Prof. Dr. Bettina Warscheid von der Universität Freiburg und Prof. Dr. Agnieszka Chacinska vom Centre of New Technologies in Warschau/Polen hat einen neuen Mechanismus entdeckt, mit dem Mitochondrien, deren Redox-Gleichgewicht geschädigt ist, die Neubildung von Proteinen im Zytoplasma regulieren können. Die Mitochondrien benutzen reaktive Sauerstoffspezies als Signal, um die Proteinsynthesemaschinerie zu verlangsamen. Die Forschungsarbeit wurde in der Fachzeitschrift „Nature Communications“ veröffentlicht.

    Zunächst bestimmte Dr. Ida Suppanz aus Warscheids Arbeitsgruppe mittels quantitativer Massenspektrometrie den Redoxzustand von Thiolen in Tausenden von Proteinen der Bäckerhefe Saccharomyces cerevisiae. Dabei entdeckte sie in Komponenten der Ribosomen, an denen die Bildung neuer Proteine stattfindet, bisher unbekannte redox-aktive Thiole.

    Ulrike Topf aus Chacinskas Arbeitsgruppe beobachtete, dass ein erhöhter Level an reaktiven Sauerstoffspezies die Neubildung von Proteinen hemmt. Durch biochemische und zellbiologische Methoden zeigte sie, dass geschädigte Mitochondrien ihren Stoffwechselzustand mit Hilfe von reaktiven Sauerstoffspezies an die Proteinsynthesemaschinerie melden und diese dadurch bremsen können.

    Es wird angenommen, dass die zeitweise Reduzierung der Proteinsyntheserate bei oxidativem Stress einen positiven Effekt auf das Überleben der Zellen hat, da es vermutlich hilft, das Gleichgewicht in der Zelle wiederherzustellen: Auf diese Weise wird verhindert, dass die Zelle Proteine synthetisiert, die von den geschädigten Mitochondrien nicht aufgenommen werden können, sich folglich im Zytoplasma anstauen und wieder abgebaut werden müssen. Wie die Zelle bei einem Proteinstau reagiert, hat das Team um Warscheid und Chacinska schon 2015 in der Fachzeitschrift „Nature“ dargelegt (Pressemitteilung: www.pr.uni-freiburg.de/pm/2015/pm.2015-08-13.119).

    Des Weiteren konnten die Wissenschaftlerinnen zeigen, dass es diesen neu entdeckten Regulationsmechanismus nicht nur in Hefezellen, sondern auch in menschlichen Zellen gibt. Erkenntnisse darüber, wie dysfunktionale Mitochondrien mit anderen Komponenten der Zelle kommunizieren, können helfen, die Mechanismen alterungsbedingter und neurodegenerativer Erkrankungen zukünftig besser zu verstehen.

    Bettina Warscheid ist Leiterin der Abteilung Biochemie – Funktionelle Proteomforschung, Institut für Biologie II, und Mitglied des Exzellenzclusters BIOSS Zentrum für biologische Signalstudien an der Universität Freiburg. Ida Suppanz ist wissenschaftliche Mitarbeiterin in der Abteilung Biochemie – Funktionelle Proteomforschung.

    Originalpublikation:
    Ulrike Topf*, Ida Suppanz*, Lukasz Samluk, Lidia Wrobel, Alexander Böser, Paulina Sakowska, Bettina Knapp, Martyna K. Pietrzyk, Agnieszka Chacinska# & Bettina Warscheid#. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species (2018). Nature Communications. DOI: 10.1038/s41467-017-02694-8. (*#Diese Autorinnen sind zu gleichen Teilen beteiligt.)

    Kontakt:
    Prof. Dr. Bettina Warscheid
    Institut für Biologie II
    Albert-Ludwigs-Universität Freiburg
    Tel.: 0761/203-2690
    E-Mail: bettina.warscheid@biologie.uni-freiburg.de


    Weitere Informationen:

    https://www.pr.uni-freiburg.de/pm/2018/nanoschalter-in-der-zelle


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    3D-Struktur von Mitochondrien in einer Hefezelle mit Sprossung. Die Markierung mit einem grünfluoreszierenden Protein zeigt, dass Mitochondrien ein dichtes tubuläres Netzwerk in der Zelle bilden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).