idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.02.2018 12:00

QUAR – Künstliche Intelligenz für die Industrie 4.0

Katrina Jordan Abteilung Kommunikation
Universität Passau

    Motorblöcke werden bereits weitgehend vollautomatisiert produziert. Das Institut FORWISS an der Universität Passau entwickelt ein intelligentes System, um die Überwachung eines Teils dieser Prozesse ebenfalls zu automatisieren: Mit Hilfe von maschinellem Lernen soll das System genaue Vorhersagen über den Verschleißzustand von Bearbeitungsmaschinen treffen können.

    Die Fertigung von Motorblöcken aus Aluminium funktioniert ohne menschliche Handgriffe: Nach dem Guss entkernen und bearbeiten Roboter die Gussteile vollautomatisiert. Mehrere Bearbeitungsstationen gehören zu einer Anlage, die jeweils auf Teilaufgaben spezialisiert sind.

    Bei der Vorentkernung beispielsweise schlagen zwei Presslufthämmer gleichzeitig auf ein Bauteil ein, um den Sand der innen liegenden Sandkerne zu lockern. „Diese Hämmer arbeiten stets an ihrer eigenen Belastungsgrenze und der des Bauteils“, erklärt Dr. Erich Fuchs, Geschäftsführer des Instituts für Softwaresysteme in technischen Anwendungen der Informatik (FORWISS Passau). Und die Arbeit muss exakt erfolgen. „Wenn die Hämmer nur fünf Millimeter daneben einschlagen, beschädigt das womöglich den Motorblock.“

    Hinzu kommt ein weiteres Risiko: Sollte eine der in der Prozessreihe liegenden Maschinen ausfallen, steht die gesamte Anlage mit all ihren 13 Stationen still, in der mehrere Motorblöcke gleichzeitig bearbeitet werden. Es kommt also zu kostenintensiven Ausfällen.

    Intelligentes System wird auf bestimmte Signale trainiert

    Hier setzt das Projekt „Vorausschauende Instandhaltung und Qualitätssicherung in der Rohteilbearbeitung – QUAR“ an: Die Forscherinnen und Forscher wollen mit Hilfe von künstlicher Intelligenz ein voll automatisiertes Überwachungssystem entwickeln. Das System soll durch Methoden des maschinellen Lernens darauf trainiert werden, genaue Vorhersagen zu treffen, wann womöglich beispielsweise die Hämmer nicht mehr korrekt arbeiten oder ausfallen könnten.

    Dazu identifizieren die Forscherinnen und Forscher Signale, die auf solche Ausfälle hindeuten könnten. Mechanische Veränderungen bei den Presslufthämmern geschehen schleichend und sind schwer zu beobachten. Sie führen aber auch zu Abweichungen in den Prozessen. Die Forscherinnen und Forscher versuchen, diese mit Hilfe von Vibrationssensoren oder über die Stromaufnahme oder weitere Sensoren messbar zu machen.

    Das Team trägt also alle verfügbaren Informationen zusammen und füttert das intelligente System damit. So sollen in der Rohteilbearbeitung zukünftig ungeplante Stillstandszeiten vermieden werden. Das System soll optimale Zeitpunkte ermitteln, zu denen kritische Komponenten ausgewechselt werden müssen. Das Projekt QUAR trägt mit diesem intelligenten Überwachungs- und Instandhaltungssystem einen Baustein zur Digitalisierung des gesamten Produktionsprozesses bei.

    Beteiligte und Förderung

    Prof. Dr. Tomas Sauer, Inhaber des Lehrstuhls für Mathematik mit Schwerpunkt Digitale Bildverarbeitung, leitet das Projekt zusammen mit FORWISS-Geschäftsführer Dr. Erich Fuchs. Das Institut bearbeitet den theoretischen Teil, also etwa die Auswahl und Umsetzung geeigneter Lernverfahren und deren mathematische Modellierung. Projektpartner aus der Industrie ist die Firma R. Scheuchl GmbH mit Sitz in Ortenburg, die als Hersteller von Spezialmaschinen für den kompletten Aufbau und den Testbetrieb der Anlage zur Rohteilverarbeitung zuständig ist. Das Bayerische Staatsministerium für Wirtschaft und Medien, Energie und Technologie fördert das Vorhaben mit Mitteln aus dem Forschungs- und Entwicklungs-Programm „Informations- und Kommunikationstechnik“ des Freistaates Bayern.

    Rückfragen zu dieser Presse-Einladung richten Sie bitte an das Referat für Medienarbeit, Tel. 0851-509 1439.


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik, Wirtschaft
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).