idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.03.2018 11:13

Potential new approach to the treatment of multiple sclerosis

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Researchers at the Mainz University Medical Center have discovered that the EGFL7 protein inhibits the migration of immune cells into the brain

    A prospective new method of treating patients with multiple sclerosis has been proposed by researchers of the Mainz University Medical Center working in cooperation with researchers of the University of Montreal. In model trials and experiments employing human endothelial cells, they discovered that the EGFL7 protein hinders the migration of immune cells into the central nervous system by stabilizing the blood-brain barrier. These findings have recently been published in Nature Communications.

    The autoimmune disease multiple sclerosis (MS) is one of the most common disorders that cause disabilities in young adults in industrialized countries. In MS, the body's own immune system attacks the central nervous system (CNS). Immune cells (T cells) cross the blood-brain barrier, i.e., the physiological barrier between the blood circulatory system and the CNS, enter the brain, and damage the protective covering of the nerve fibers, the myelin layer. This results in the degeneration and loss of function of nerve cells and leads to neurological disability-related symptoms.

    The primary aim of MS research is to develop new treatments that will prevent this pathological process. Putting the EGFL7 protein at the focus of their research, the team led by Dr. Timo Uphaus and Professor Frauke Zipp of the Department of Neurology at the University Medical Center of Johannes Gutenberg University Mainz collaborated with Dr. Catherine Larochelle of the University of Montreal and Professor Mirko Schmidt and researchers of the German Cancer Consortium (DKTK). They chose a completely innovative pathophysiological-based approach as EGFL7 had not previously been considered of relevance to MS research. However, it has been shown, for example in the case of breast cancer, that EGFL7 does have an influence on the migration of immune cells into tumor tissue. Since the migration of immune cells into the brain plays a significant role in MS, the researchers decided to investigate this protein and whether it could also have an effect on the autoimmune disorder. Notably, on the basis of their results they were able to demonstrate a possible new approach to successfully treat MS.

    The researchers discovered that CNS inflammation was accompanied by an increased release of EGFL7. Immune cells subsequently bind to EGFL7, in a sense being taken prisoner so that they are prevented from crossing into the CNS. EGFL7 is released by the endothelial cells of the blood-brain barrier and causes immune cells to be retained in the perivascular space. In their model trials, the researchers next found that exposure to EGLF7 makes the blood-brain barrier less permeable. In the presence of this more effective barrier, the passage of immune cells into the CNS was reduced. This counteracted the corresponding pathological mechanisms and thus led to improvements in clinical symptoms.

    Furthermore, the researchers were able to confirm their experimental findings in a human blood-brain barrier model, where there was also decreased migration of immune cells in isolated human endothelial cells. They now conclude that it might be possible in principle to take advantage of the way that EGFL7 inhibits the migration of immune cells into the CNS and enhances the impenetrability of the blood-brain barrier for the treatment of multiple sclerosis.

    Publication: "EGFL7 reduces CNS inflammation in mouse"
    Catherine Larochelle, Timo Uphaus, Bieke Broux, Elizabeth Gowing, Magdalena Paterka, Laure Michel, Nevenka Dudvarski Stankovic, Frank Bicker, Florent Lemaître, Alexandre Prat, Mirko H. H. Schmidt, Frauke Zipp; Nature Communications, volume 9, Article number: 819 (2018), DOI: 10.1038/s41467-018-03186-z; http://rdcu.be/HPnn

    Image:
    http:www.uni-mainz.de/bilder_presse/04_unimedizin_MS_EGFL7_lesion.jpg
    EGLF7 retains immune cells in the perivascular space in MS lesions
    photo/©: Catherine Larochelle, Timo Uphaus, Frauke Zipp

    Contact:
    Dr. Timo Uphaus
    Department of Neurology
    Mainz University Medical Center
    Langenbeckstr. 1
    55131 Mainz, GERMANY
    phone +49 6131 17-2224
    e-mail: timo.uphaus@unimedizin-mainz.de

    Press contact
    Barbara Reinke
    Press and Public Relations
    Mainz University Medical Center
    Langenbeckstr. 1
    55131 Mainz, GERMANY
    phone +49 6131 17-7428
    fax +49 6131 17-3496
    e-mail: pr@unimedizin-mainz.de

    About the University Medical Center of Johannes Gutenberg University Mainz
    The University Medical Center of Johannes Gutenberg University Mainz is the only medical facility providing supramaximal care in Rhineland-Palatinate while also functioning as an internationally recognized hub of medical science. It has more than 60 clinics, institutes, and departments that collaborate across the various disciplines. Highly specialized patient care, research, and teaching form an integral whole at the Mainz University Medical Center. Approximately 3,300 students are trained in medicine and dentistry in Mainz. With its approximately 7,500 personnel, the Mainz University Medical Center is also one of the largest employers in the region and an important driver of growth and innovation. Further information is available online at http://www.unimedizin-mainz.de/index.php?id=240&L=1.


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).