idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.03.2018 10:03

Nature article: Scientists develop a room temperature maser to amplify weak signals

Friederike Meyer zu Tittingdorf Pressestelle der Universität des Saarlandes
Universität des Saarlandes

    The spacecraft Voyager 2 has travelled a barely imaginable 17 billion kilometers from Earth and continues to send signals to the ground station. This is made possible by the maser technology, which works on similar principles to the laser and is able to amplify weak microwave signals almost noise-free. For regular communication on Earth, this technology is rarely used because it works only at low temperatures. However, a research team at the London Center for Nanotechnology and the University of Saarland has now developed a maser that can be used at room temperature. Their development is depicted on the cover of the eminent scientific journal "Nature", on 22nd March 2018.

    The abbreviation "Maser" stands for "microwave amplification by stimulated emission of radiation", i.e. a microwave amplification, which is generated by a stimulated emission of radiation. The physics behind the maser is similar to that of the laser, whose name stands for "light amplification by stimulated emission of radiation". Both generate coherent electromagnetic radiation at a single wavelength / frequency. "Until now, masers were mainly used for communication in space, for example to maintain radio contact with the Voyager spacecraft. Because masers can amplify very weak signals almost noise-free this makes them interesting for future communication technologies on Earth", says Christopher Kay, Professor of Physical Chemistry and Didactics of Chemistry at the University of the Saarland.

    A disadvantage of the existing maser technology is that it needs very low temperatures, which could be reached only by the employment of liquid helium. Together with fellow researchers at the London Center for Nanotechnology, Christopher Kay has now developed a maser that can be operated at ambient temperatures. The key to the technology is the use of a sapphire microwave resonator, held in a magnetic field. The resonator confines and concentrates the microwave radiation and thereby it may be amplified it in a phase-stable manner.

    The radiation itself is generated by optically exciting “nitrogen vacancy” centers in a diamond. In contrast to pure diamonds, which contain only carbon atoms and are therefore colorless, in the diamond used here a small number of carbon atoms are replaced by a nitrogen atom. The site next to the nitrogen atom, which usually contains one carbon atom, is empty. "This defect is referred to as an NV (Nitrogen Vacancy) Center and it gives the diamond a purple color. It has a multitude of remarkable quantum properties and is therefore of interest for the development of new technologies, especially for nano applications", explains Christopher Kay. For example, a maser can be used for more precise measurements in space exploration or nanotechnology, which is often called nanometrology. "Wherever signals with low intensity are to be received, for example, over over long distances and need to be amplified without adding noise, the maser opens up new possibilities," says Kay.

    "It had already been suggested in the scientific community that diamonds with NV centers could be used as the basis for a maser, but the key to our success was to place a diamond in a sapphire resonator", explains the lead author of the Nature article, physicist Jonathan Breeze of Imperial College, London, adding, "An exciting aspect of this technology is in that the output frequency can be adjusted simply by changing the applied magnetic field. The current device operates at a frequency of 9 GigaHertz (nine billion cycles per second). For comparison, mobile phones work in the two-GigaHertz range. With commercially available magnetic technologies, frequencies up to 200 GigaHertz could be achieved with our room temperature maser."

    As masers use optical photons to generate microwave photons, the researchers expect their work to open new avenues in the fields of diamond quantum technology, magnetic resonance imaging and communications.

    The research was supported by the UK Engineering and Physical Sciences Research Council and the Henry Royce Institute.

    Original publication in the current issue of “Nature”: Continuous-wave room-temperature diamond maser: www.nature.com/articles/nature25970 (doi:10.1038/nature25970)

    Contact:
    Prof. Dr. Christopher Kay
    Physical Chemistry and Didactic of Chemistry
    Tel.: 00 49 681 302 2213
    E-Mail: christopher.kay@uni-saarland.de


    Weitere Informationen:

    http://www.nature.com/articles/nature25970
    http://www.uni-saarland.de/pressefotos - Press Photos


    Bilder

    Diamond in a sapphire ring
    Diamond in a sapphire ring
    Jonathan Breeze
    None

    The maser effect was achieved by placing a diamond in a sapphire ring and irradiating with green light from a laser. The diamond appears red due to fluorescence after excitation.
    The maser effect was achieved by placing a diamond in a sapphire ring and irradiating with green lig ...
    Jonathan Breeze
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Chemie, Elektrotechnik, Informationstechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Diamond in a sapphire ring


    Zum Download

    x

    The maser effect was achieved by placing a diamond in a sapphire ring and irradiating with green light from a laser. The diamond appears red due to fluorescence after excitation.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).