idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.09.2003 10:57

Wie Gas und Staub sich zu neuen Sternen zusammenballen

Dr. Michael Schwarz Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Astrophysik ins Labor geholt - "Minerva-Award-Lecture" in Heidelberg - Öffentlicher Vortrag (in englischer Sprache) von Prof. Daniel Zajfman am 23. September 2003 in der Alten Universität

    Der Raum zwischen den Sternen ist keinesfalls leer. Er enthält Gas und Staub, allerdings unter extremen Bedingungen: Die Temperaturen liegen mit weniger als minus 260 Grad Celsius knapp über dem Absoluten Nullpunkt, die Dichte ist unvorstellbar gering, ein Vakuum, das sich auf der Erde nicht verwirklichen lässt.
    Dennoch entstehen aus dieser interstellaren ("zwischen den Sternen" vorkommenden) Materie auch heute noch neue Sterne. Um solche Vorgänge zu enträtseln, haben Wissenschaftler die Astrophysik ins Labor geholt. Über dieses faszinierende Thema berichtet der Preisträger des erstmals in diesem Jahr verliehenen "Minerva Award", Prof. Daniel Zajfman, The Weizmann Institute of Science, Rehovot, Israel, in einem öffentlichen Vortrag (in englischer Sprache) am 23. September 2003, 19.00 Uhr, in der Alten Universität Heidelberg, Grabengasse 1. Die "Minerva-Award-Lecture" bietet hervorragend qualifizierten Forschern des Weizmann-Instituts Gelegenheit, ihre von der Minerva-Stiftung, einer Tochtergesellschaft der Max-Planck-Gesellschaft, geförderten Gemeinschaftsprojekte mit deutschen Partnern in der Bundesrepublik vorzustellen.

    Wichtigstes Instrument bei den Untersuchungen Zajfmans ist der Test Storage Ring (TSR) des Max-Planck-Instituts für Kernphysik in Heidelberg. Damit lassen sich ultrakalte Molekülsorten, wie sie im Weltraum vorkommen, herstellen und speichern. Und so die grundlegenden physikalischen und chemischen Prozesse untersuchen, die schließlich dazu führen, dass neue Sonnen erstrahlen - aber auch neue Planetensysteme entstehen.

    Seit über zwölf Jahren arbeitet Prof. Daniel Zajfman - er wurde 1959 in Belgien geboren und ist 1979 nach Israel ausgewandert - mit Prof. Dirk Schwalm und Prof. Andreas Wolf am Max-Planck-Institut für Kernphysik zusammen. Mehr als 60 wissenschaftliche Arbeiten über Forschungsergebnisse aus Deutschland stammender Studenten am Weizmann-Institut und ihrer Kollegen aus Israel am Heidelberger Max-Planck-Institut sind inzwischen über das Thema veröffentlicht worden.

    Ein extrem schwieriges Unternehmen: Versucht man doch, in Labors auf der Erde die kosmischen Zustände und Wechselwirkungen zu verstehen, die Tausende von Lichtjahren entfernt stattfinden und das Geschehen in der interstellaren Materie bestimmen.

    Die interstellare Materie besteht im wesentlichen aus Gas, also frei umher schwirrenden Atomen und Molekülen, aber auch aus festen, mikroskopisch-winzigen Partikeln, dem kosmischen Staub. Im Weltall sind diese Bestandteile unterschiedlich dünn verteilt; im interstellaren Gas kommt durchschnittlich nur ein einziges Atom pro Kubikzentimeter Raum vor.

    Dass sich in der Eiseskälte des Alls unter extrem geringem Druck Atome begegnen und zu Molekülen zusammenschließen können, galt lange Zeit als äußerst unwahrscheinlich. Erst als die technische Entwicklung immer feinere Analysen der Strahlung aus dem Weltraum möglich gemacht hat, zeigte sich: "Zwischen den Sternen gibt es mehr unterschiedlich aufgebaute Moleküle als in den Sternen selbst", bestätigt Prof. Zajfman. Mehrere Dutzend solcher Weltraummoleküle sind inzwischen anhand ihrer "spektralen Fingerabdrücke" gefunden worden.

    Moleküle sind mehr oder weniger zerbrechliche Atomverbände. Im Weltraum sind sie harten Belastungen ausgesetzt, beispielsweise durch Schockwellen oder energieintensive Strahlung. Wenn sie von Lichtteilchen oder anderen Molekülen getroffen werden, beginnen sie unterschiedlich schnell zu rotieren und zu schwingen und wirken dann wie kleine Sendeantennen. Sie strahlen dabei elektromagnetische Wellen ab, die wegen der niedrigen Temperaturen in den "galaktischen Kühlschränken" vor allem im energiearmen Radio- und Infrarot-Bereich mit Teleskopen auf der Erde nachgewiesen werden können. Dabei liefern die Spektrallinien solcher Moleküle nicht nur Informationen über die chemische Zusammensetzung der interstellaren Materie, sondern auch über wichtige physikalische Eigenschaften wie Temperatur, Dichte, Bewegungen oder magnetische Felder.

    Im nahezu leeren Weltraum geschieht es nur äußerst selten, dass freie Atome zufällig zusammenstoßen und sich zu Molekülen vereinen. Wesentlich besser stehen die Chancen, wenn einer der Partner elektrisch geladen ist und somit seine Anziehungskraft wächst. Er braucht nur ein Elektron zu verlieren, etwa durch den "Beschuss" mit intensiver kosmischer Strahlung: Neutrale Atome werden so zu elektrisch geladenen Ionen, ebenso wie Moleküle, sofern sie nicht völlig zerschlagen werden, zu chemisch aggressiven "Radikalen". Welche Rolle allerdings die kosmischen Staubteilchen spielen, ist bislang weitgehend unbekannt. Zwischen diesen Teilnehmern findet die "kalte, interstellare Chemie" statt - dies ist das Arbeitsgebiet von Prof. Zajfman.

    Prof. Zajfman ist weltweit anerkannter Spezialist für elektrisch geladene Moleküle, besonders von Wasserstoff, einfachen Kohlenwasserstoff-Verbindungen und ionisiertem Sauerstoff. Damit versucht Prof. Zajfman die grundlegenden physikalischen Prozesse besser zu verstehen, die dafür verantwortlich sind, dass im interstellaren Raum Moleküle entstehen, erhalten bleiben oder zu Bruchstücken zerfallen. Für solche atomaren Basisdaten, die auch auf der Erde etwa für die Chemie von entscheidender Bedeutung sind, gibt es bisher vor allem aus der Theorie abgeleitete Näherungsberechnungen, doch kaum exakte Messungen, schon gar nicht unter den "exotischen" Bedingungen der interstellaren Materie.

    Am Test Storage Ring des Heidelberger Max-Planck-Instituts für Kernphysik ist es dem deutsch-israelischen Forscherteam nun gelungen, einige Prozesswege aufzuklären, wie Moleküle im interstellaren Raum entstehen oder in einzelne Atome zerbrechen und welche Energien dabei freigesetzt werden.

    Rückfragen bitte an:
    Dr. Michael Schwarz
    Pressesprecher der Universität Heidelberg
    Tel. 06221 542310, Fax 542317
    michael.schwarz@rektorat.uni-heidelberg.de
    http://www.uni-heidelberg.de/presse


    Bilder

    Merkmale dieser Pressemitteilung:
    Mathematik, Physik / Astronomie
    überregional
    Buntes aus der Wissenschaft
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).