idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project



Teilen: 
10.04.2018 15:58

Hannover Messe: Transparente flexible Elektroden durch Elektro-Spinning-Prozesse

Dr. Carola Jung Presse- und Öffentlichkeitsarbeit
INM - Leibniz-Institut für Neue Materialien gGmbH

    Tippen und Wischen kann auf gebogenen Geräten nur funktionieren, wenn als Materialien für Touchscreens und für elektrische Schaltkreise flexible Werkstoffe verwendet werden und keine spröden Materialien wie Indium-Zinn-Oxid oder Silizium. Für die Entwicklung solcher Materialien nutzt das INM - Leibniz-Institut für Neue Materialien das Verfahren des sogenannten Elektrospinnens. Dabei werden Materialien in feinste Fasern versponnen, die hundertmal dünner als ein menschliches Haar sind. Diese schlagen sich als unstrukturiertes, weitmaschiges Netz auf Glas oder Folie nieder.

    Touchscreens und Displays der Zukunft werden gebogen und flexibel sein. Sie kommen zum Beispiel in Tablets, Smartphones, Autos, Bekleidung oder in der Medizintechnik zum Einsatz. Tippen und Wischen kann auf gebogenen Geräten nur funktionieren, wenn als Materialien für Touchscreens und für elektrische Schaltkreise flexible Werkstoffe verwendet werden und keine spröden Materialien wie Indium-Zinn-Oxid oder Silizium. Für die Entwicklung solcher Materialien nutzt das INM - Leibniz-Institut für Neue Materialien das Verfahren des sogenannten Elektrospinnens. Dabei werden Materialien in feinste Fasern versponnen, die hundertmal dünner als ein menschliches Haar sind. Diese schlagen sich als unstrukturiertes, weitmaschiges Netz auf Glas oder Folie nieder. Mit dem Verspinnen von leitfähigen Materialien ergeben sich so transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

    Das INM präsentiert das neue Verfahren auf der diesjährigen Hannover Messe in Halle 2 am Stand B46 vom 23. bis 27. April.

    Das Prinzip des Elektrospinnens beruht auf der Elektrohydrodynamik von Polymertropfen in starken elektromagnetischen Feldern. Die Tropfen gehen im elektrischen Feld in einen Kegel über. Aus diesem schießt ein Strahl des flüssigen Polymers heraus, um so die elektrischen Ladungen zu verringern. An der Luft bilden sich aus dem Polymerstrahl wegen seiner Biegeinstabilität Fasern mit einer Dicke von weniger als 500 Nanometern. Sie scheiden sich auf Substraten wie Glas oder Folie als unstrukturiertes, weitmaschiges Netz ab. „Das Neuartige an unserem Ansatz liegt in den Ausgangsmaterialien, die wir verwenden. Wir verarbeiten Polymere, Komposite aber auch Sole, die anschließend kalziniert werden. Je nach Ausgangsmaterial ist es möglich, sowohl intrinsisch leitfähige Fasern herzustellen, als auch solche, die in einem weiteren Schritt über eine Versilberung elektrisch leitfähig werden“, erklärt Peter William de Oliveira, Leiter des InnovationsZentrums am INM.

    Im Gegensatz zu Strukturierungsverfahren über Stempel oder Druckverfahren ermöglicht das Elektrospinnen unstrukturierte leitfähige Vliese, deren Dichte hoch genug ist, um die elektrische Leitfähigkeit auf dem Substrat flächendeckend zu ermöglichen. Gleichzeitig ist die Anzahl an Faserkreuzungspunkten so gering, dass die Lichtstreuung auf unter zwei Prozent reduziert wird. Bei einer Faserdicke unter einem halben Mikrometer ist das Vlies für das menschliche Auge nicht zu erkennen und erscheint transparent. Durch den netzartigen, unsymmetrischen Charakter der Fasern fallen auch typische Beugungsphänomene weg, wie zum Beispiel störende Regenbogeneffekte.

    „Dieser Prozess ist maschinentauglich und ermöglicht deshalb einen sehr effizienten Weg für solche Elektroden. Im InnovationsZentrum verfügen wir über eine Spinn-Station, mit der wir auf die unterschiedlichen Bedürfnisse der Interessenten eingehen können“, meint de Oliveira. So ließen sich in Kooperation Elektroden für flexible Displays, für die Photovoltaik oder für passive Sensoren entwickeln.

    Die Fasern des Elektrospinnens ließen sich nicht nur als leitfähige Vliese verwenden. Sie seien auch geeignet, um sie zu Elektronik zu verweben, oder um sie, aufgrund ihrer hohen Oberfläche, für die aktive Wasserbehandlung einzusetzen.

    Ihr Experte am INM
    Dr. Peter William de Oliveira
    Leiter InnovationsZentrum INM
    Leiter Optische Materialien
    Tel.: 0681-9300-148
    peter.oliveira@leibniz-inm.de

    Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 240 Mitarbeiter.


    Weitere Informationen:

    http://www.leibniz-inm.de


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Maschinenbau, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer
    Deutsch


    Mit E-spinning lassen sich feinste Fasern für flexible, transparente Eletroden herstellen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).