Physiker der Universität Basel haben das quantenmechanische Einstein-Podolsky-Rosen Paradoxon erstmals in einem System aus mehreren hundert miteinander wechselwirkenden Atomen beobachtet. Das Phänomen geht auf ein berühmtes Gedankenexperiment aus dem Jahr 1935 zurück. Es erlaubt, präzise Vorhersagen für Messungen zu machen und könnte in neuartigen Sensoren und Abbildungsverfahren für elektromagnetische Felder Verwendung finden. Das berichten die Forscher in der Fachzeitschrift «Science».
Wie präzise kann man die Ergebnisse von Messungen an einem physikalischen System vorhersagen? In der Welt der kleinsten Teilchen, die den Gesetzen der Quantenphysik gehorcht, gibt es eine fundamentale Grenze für die Genauigkeit solcher Vorhersagen. Ausgedrückt wird sie durch die Heisenbergsche Unschärferelation, die besagt, dass man zum Beispiel die Messwerte von Ort und Impuls eines Teilchens oder auch von zwei Komponenten eines Spins nicht gleichzeitig beliebig genau vorhersagen kann.
Paradoxe Verringerung der Unschärfe
In einer berühmten Arbeit von 1935 haben Albert Einstein, Boris Podolsky und Nathan Rosen theoretisch gezeigt, dass unter bestimmten Umständen jedoch genaue Vorhersagen möglich sind. Dazu betrachteten sie zwei Systeme A und B, die sich in einem sogenannten verschränkten Zustand befinden, in dem ihre Eigenschaften sehr stark korrelieren.
Die Ergebnisse von Messungen an System A können dann dafür verwendet werden, die entsprechenden Messergebnisse an System B im Prinzip beliebig genau vorherzusagen. Dies ist auch dann möglich, wenn die Systeme A und B räumlich getrennt sind. Das Paradoxe dabei ist, dass ein Beobachter durch Messungen an System A präzisere Aussagen über System B machen kann, als ein Beobachter der direkt Zugriff auf System B hat (aber nicht auf A).
Erste Beobachtung in Vielteilchensystem
Experimentell wurde dieses nach den Initialen seiner Entdecker benannte «EPR-Paradoxon» bisher mit Licht oder einzelnen Atomen untersucht. Ein Team von Physikern um Professor Philipp Treutlein vom Departement Physik der Universität Basel und dem Swiss Nanoscience Institute konnte das EPR-Paradoxon nun erstmals mit einem Vielteilchensystem aus mehreren hundert miteinander wechselwirkenden Atomen beobachten.
Im Experiment wurden Atome mithilfe von Lasern auf wenige milliardstel Grad über dem absoluten Nullpunkt gekühlt. Bei diesen Temperaturen verhalten sich die Atome vollkommen quantenmechanisch und bilden ein sogenanntes Bose-Einstein-Kondensat – ein Zustand der Materie, der in einer weiteren bahnbrechenden Arbeit von Einstein 1925 vorhergesagt wurde. In dieser ultrakalten Wolke stossen die Atome ständig zusammen, sodass sich ihre Spins miteinander verschränken.
Anschliessend führten die Forscher Messungen des Spins an räumlich voneinander getrennten Regionen des Kondensats durch. Mittels hochauflösender Bildgebung konnten sie die Spin-Korrelationen zwischen den gesonderten Regionen direkt messen und gleichzeitig die Atome in genau definierten Positionen lokalisieren. Mit ihrem Experiment ist es den Forschern gelungen, auf Grundlage der Messungen in einer bestimmten Region die Ergebnisse für eine andere Region vorherzusagen.
«Die Messergebnisse der beiden Regionen waren so stark miteinander korreliert, dass wir damit das EPR-Paradoxon nachweisen konnten», so Matteo Fadel, Doktorand und Erstautor der Studie. «Es ist faszinierend, ein so fundamentales Phänomen der Quantenphysik an immer grösseren Systemen zu beobachten. Gleichzeitig stellen wir mit unseren Experimenten eine Verbindung zwischen zwei der wichtigsten Arbeiten Einsteins her.»
Auf dem Weg zur Quantentechnologie
Neben der Grundlagenforschung spekulieren die Wissenschaftler bereits über mögliche Anwendungen ihrer Entdeckung. Die vom EPR-Paradoxon ermöglichte Methode könnte beispielsweise atomare Sensoren und Abbildungsmethoden für elektromagnetische Felder verbessern. Die Entwicklung solcher Quantensensoren ist ein Ziel des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (NCCR QSIT), an dem das Forscherteam aktiv beteiligt ist.
Originalbeitrag
Matteo Fadel, Tilman Zibold, Boris Décamps, and Philipp Treutlein
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates
Science (2018), doi: 10.1126/science.aao1850
Weitere Auskünfte
Prof. Dr. Philipp Treutlein, Universität Basel, Departement Physik, Tel. +41 61 207 37 66, E-Mail: philipp.treutlein@unibas.ch
Eine Wolke aus Atomen wird von elektromagnetischen Feldern über einem Chip gehalten. Zwischen den rä ...
Universität Basel, Departement Physik
None
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Eine Wolke aus Atomen wird von elektromagnetischen Feldern über einem Chip gehalten. Zwischen den rä ...
Universität Basel, Departement Physik
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).