idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Medienpartner:
Wissenschaftsjahr


Teilen: 
14.05.2018 11:10

Frequenzstabile Lasersysteme für den Weltraum

Dipl.-Geogr. Anja Wirsing Pressestelle des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

    JOKARUS-Experiment auf Höhenforschungsrakete erfolgreich durchgeführt. Grundstein für Laser-Abstandsmessungen mit allerhöchster Präzision und Wegbereiter für optische Satellitensysteme zur Navigation.

    Erstmalig wurde eine Frequenzreferenz auf Basis von molekularem Jod im Weltraum erfolgreich demonstriert! Was sich ein bisschen wie Science Fiction anhört, ist ein wichtiger Schritt zu laserinterferometrischen Abstandsmessungen zwischen Satelliten oder auch für zukünftige globale Navigationssatellitensysteme auf Basis optischer Technologien. Die Tests zur Frequenzreferenz wurden am 13. Mai an Bord der Höhenforschungsrakete TEXUS54 durchgeführt. Ein kompaktes Lasersystem, das maßgeblich von der HU Berlin und dem Ferdinand-Braun-Institut entwickelt wurde, demonstrierte dabei seine Weltraumtauglichkeit.

    Im JOKARUS-Experiment (Jod Kamm Resonator unter Schwerelosigkeit) wurde zum erstem Mal eine aktive optische Frequenzreferenz auf Basis von molekularem Jod im Weltraum qualifiziert. Die Ergebnisse sind ein wichtiger Meilenstein auf dem Weg zum Einsatz optischer Uhren im Weltraum. Derartige Uhren werden unter anderem benötigt in satellitengestützten Navigationssystemen, die Daten zur genauen Positionsbestimmung liefern. Auch für fundamentalphysikalische Untersuchungen, wie die Detektion von Gravitationswellen oder zur Vermessung des Schwerefelds der Erde, sind sie unverzichtbar.

    Das Experiment demonstrierte die automatisierte Frequenzstabilisierung eines frequenzverdoppelten 1064 nm Extended Cavity Diode Lasers (ECDL) auf einen molekularen Übergang in Jod. Dank integrierter Software und entsprechenden Algorithmen funktionierte das Lasersystem vollkommen eigenständig. Zu Vergleichszwecken wurde während des gleichen Weltraumflugs eine Frequenzmessung mit einem optischen Frequenzkamm im separaten Experiment FOKUS II durchgeführt.

    Dieses Know-how steckt im kompakten Diodenlaser-System

    Die JOKARUS-Nutzlast wurde unter Leitung der Humboldt-Universität zu Berlin (HU Berlin) im Rahmen des Joint Lab Laser Metrology entwickelt und aufgebaut. Das Joint Lab wird gemeinsam vom Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) und der HU Berlin betrieben und bündelt das Know-how beider Einrichtungen zu Diodenlasersystemen für Weltraumanwendungen. Ein quasi-monolithisches Spektroskopiemodul wurde von der Universität Bremen bereitgestellt, die Betriebselektronik stammt von Menlo Systems.

    Herzstück des Systems ist ein mikrointegrierter ECDL-MOPA mit einem ECDL als Lokaloszillator (Master Oscillator, MO) und einem Rippenwellenleiter-Halbleiterverstärker als Leistungsverstärker (Power Amplifier, PA), der am FBH entwickelt und realisiert wurde. Das 1064 nm Lasermodul ist in einem 125 x 75 x 22,5 mm³ kleinen Gehäuse vollständig verkapselt und liefert eine optische Leistung von 570 mW innerhalb der Linienbreite des freilaufenden Lasers von 26 kHz (FWHM, 1 ms Messzeit). Durch eine polarisationserhaltende, optische Single-Mode-Faser wird das Laserlicht zunächst in zwei Pfade aufgeteilt, moduliert, frequenzverdoppelt und für die Doppler-freie Sättigungsspektroskopie aufbereitet. Die vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) geförderte Technologieentwicklung in JOKARUS baut auf den früheren Missionen FOKUS, FOKUS reflight, KALEXUS und MAIUS auf.

    Kontakte

    Ferdinand-Braun-Institut
    Leibniz-Institut für Höchstfrequenztechnik
    Petra Immerz / Dr. Andreas Wicht

    Tel. 030.6392-2626 / -3958
    E-Mail petra.immerz@fbh-berlin.de / andreas.wicht@fbh-berlin.de
    Web www.fbh-berlin.de

    Humboldt-Universität zu Berlin
    AG Optische Metrologie
    Prof. Achim Peters, PhD / Dr. Markus Krutzik

    Tel. 030.2093-4905 / -4814
    E-Mail achim.peters@physik.hu-berlin.de / markus.krutzik@physik.hu-berlin.de
    Web www.physics.hu-berlin.de/en/qom/research/jokarus

    Über das Joint Lab Laser Metrology am FBH
    Im Rahmen des Joint Lab Laser Metrology werden sehr schmalbandige Diodenlaser, unter anderem für die optische Präzisionsspektroskopie im Weltraum entwickelt. Hierbei arbeiten das Ferdinand-Braun-Institut und die Arbeitsgruppe Optische Metrologie der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin eng zusammen. Dadurch können die gemeinsamen Interessen und komplementären Expertisen von HU (optische Präzisionsmessungen für fundamentalphysikalische Fragestellungen) und FBH (Halbleiterlaserentwicklung) optimal gebündelt werden.
    Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich.
    www.fbh-berlin.de


    Weitere Informationen:

    https://www.fbh-berlin.de/presse/pressemitteilungen/detail/frequenzstabile-laser...
    http://Web www.fbh-berlin.de
    http://www.physics.hu-berlin.de/en/qom/research/jokarus


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Elektrotechnik, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften, Wirtschaft
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


    JOKARUS-Nutzlast für den ersten optischen Frequenzstandard auf Basis von molekularem Jod im Weltraum.


    Zum Download

    x

    Herzstück des JOKARUS-Experiments: ein mikrointegriertes Diodenlasermodul (ECDL-MOPA) aus dem Ferdinand-Braun-Institut, das bei einer Wellenlänge von 1064 nm emittiert.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay