idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.07.2018 10:11

Künstliche neuronale Netze helfen, das Gehirn zu kartieren

Dr. Stefanie Merker Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie

    Um das Konnektom, den „Schaltplan“ eines Gehirns zu erstellen, erfassen Neurobiologen das Gehirn mit Hilfe dreidimensionaler Elektronenmikroskopie-Aufnahmen. Die Bildanalyse größerer Bereiche durch den Menschen würde jedoch trotz erheblicher Computer-Unterstützung Jahrzehnte dauern. Nun stellen Wissenschaftler von Google AI und dem MPI für Neurobiologie ein auf künstlichen neuronalen Netzen basierendes Verfahren vor, das ganze Nervenzellen mit allen Bestandteilen und Verbindungen nahezu fehlerfrei aus einem Bilderstapel herausarbeiten kann. Dieser Meilenstein in der automatischen Datenanalyse könnte die Kartierung ganzer Gehirne, und damit langfristig auch deren Verständnis, näherbringen.

    Im Vergleich zum Gehirn benutzen künstliche neuronale Netze stark vereinfachten "Nervenzellen". Dennoch hat die darauf basierende künstliche Intelligenz bereits unzählige Anwendungen gefunden: vom autonomen Fahren über die Qualitätskontrolle bis hin zur Diagnose von Krankheiten. Bei sehr komplexen Aufgaben, wie dem Herausarbeiten einzelner Nervenzellen mit all ihren Verästelungen und Kontaktstellen aus einer dreidimensionalen Bildaufnahme eines Gehirns, waren die Algorithmen bisher jedoch zu ungenau.

    „Die Zellstrukturen, die der Computer aus unseren elektronenmikroskopischen Aufnahmen generierte, hatten einfach viel zu viele Fehler“, berichtet Jörgen Kornfeld vom Max-Planck-Institut für Neurobiologie in Martinsried. „Um damit etwas anfangen zu können, musste alles nochmals "korrekturgelesen" werden.“ Das nimmt viel menschliche Arbeitszeit in Anspruch: Ganze elf Jahre würde das Überprüfen eines Bilderstapels mit gerade mal 0,1 Millimetern Kantenlänge dauern. „Daher mussten wir etwas Besseres erfinden“, so Kornfeld. Besser als alles andere sind — zumindest derzeit – die flood-filling networks (FFNs), die Michal Januszewski zusammen mit seinen Kollegen bei Google A.I. entwickelt. Ein Datensatz aus dem Singvogelhirn, den Kornfeld schon vor Jahren aufgenommen und teilweise von Hand analysiert hatte, spielte bei dieser Entwicklung eine wichtige Rolle. Die wenigen, vom Menschen sorgfältig analysierten Zellen, stellen die Referenzdaten (ground truth) dar, anhand derer die FFNs erst lernten zu erkennen, wie ein richtiger Nervenzellausläufer aussieht, um mit dem Gelernten dann in Windeseile den Rest des Datensatzes zu kartieren.

    Die Zusammenarbeit zwischen Computerwissenschaftlern und Biologen hat in der von Winfried Denk geleiteten Abteilung schon Tradition. Der Leiter der Google Arbeitsgruppe, Viren Jain, war im Jahr 2005 Doktorand am MIT, als sich Denk an Jains Doktorvater, Sebastian Seung, wandte. Es ging um Hilfe bei der Analyse der mit einer in Denks Abteilung damals neu entwickelten Methode aufgenommenen Datensätze. In der Abteilung war Kornfeld damals damit beschäftigt, ein Computerprogramm für die Daten-Visualisierung und Annotation zu schreiben. Kornfeld, in dessen Forschung Neurobiologie und Datenwissenschaften zunehmend verschmelzen, entwickelte hauptverantwortlich das "SyConn" System zur automatischen Synapsenanalyse. Dieses wird – wie die FFNs – bei der Gewinnung biologischer Erkenntnisse aus dem Singvogeldatensatz unverzichtbar sein. Die Entwicklung der FFNs steht, so Denk, als Symbol für einen Wendepunkt in der Konnektomik. Die Geschwindigkeit der Datenanalyse hinkt nun nicht mehr der elektronenmikroskopischen Aufnahmegeschwindigkeit hinterher.

    FFNs gehören zu den "Convolutional neural networks", einer speziellen Klasse von Algorithmen des automatischen Lernens. FFNs besitzen jedoch einen internen Rückkoppelungspfad, der es ihnen erlaubt auf bereits im Bild Erkanntes aufzubauen. Dies erleichtert es dem FFN enorm, die Unterscheidung von zellinternen und zellexternen Bereichen auf nahegelegene Bildelemente auszudehnen. Dabei lernt das FFN während der Lernphase nicht nur, welche Färbemuster eine Zellgrenze anzeigen, sondern auch, welche Formen diese Grenzen typischerweise haben. Die erwartete Einsparung an menschlicher Korrekturlesezeit durch die FFNs rechtfertigt auf jeden Fall, so Kornfeld, deren – im Vergleich zu bisherigen Methoden – größeren Verbrauch an Rechenleistung.

    Inzwischen scheint es nicht mehr völlig undenkbar, wirklich große Datensätze, bis hin zu einem gesamten Maus- oder Vogelhirn, aufzunehmen und zu analysieren. „Die Hochskalierung wird technisch sicher anspruchsvoll, aber im Prinzip haben wir jetzt im Kleinen demonstriert“, sagt Jörgen Kornfeld, „dass alles Nötige für die Analyse bereitsteht.“

    KONTAKT
    Dr. Stefanie Merker
    Max-Planck-Institut für Neurobiologie
    Presse- und Öffentlichkeitsarbeit
    Am Klopferspitz 18
    82152 Martinsried
    Tel.: 089 8578 3514
    Email: merker@neuro.mpg.de


    Wissenschaftliche Ansprechpartner:

    Jörgen Kornfeld
    Max-Planck-Institut für Neurobiologie
    Abteilung Elektronen – Photonen – Neuronen
    Am Klopferspitz 18
    82152 Martinsried
    Tel.: 089 8578 - 3563
    Email: kornfeld@neuro.mpg.de


    Originalpublikation:

    Michał Januszewski, Jörgen Kornfeld, Peter H. Li, Art Pope, Tim Blakely, Larry Lindsey, Jeremy Maitin-Shepard, Mike Tyka, Winfried Denk, Viren Jain
    High-precision automated reconstruction of neurons with Flood-filling Networks
    Nature Methods, online am 16. Juli 2018
    DOI: https://doi.org/10.1038/s41592-018-0049-4


    Weitere Informationen:

    - Rekonstruierte Nervenzellen
    https://www.neuro.mpg.de - Webseite des MPI für Neurobiologie


    Bilder

    Rekonstruktion von Nervenzellen aus einem Elektronenmikroskopie-Datensatz mit Hilfe der flood-filling networks (FFN).
    Rekonstruktion von Nervenzellen aus einem Elektronenmikroskopie-Datensatz mit Hilfe der flood-fillin ...
    (c) MPI für Neurobiologie, Julia Kuhl
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie, Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Rekonstruktion von Nervenzellen aus einem Elektronenmikroskopie-Datensatz mit Hilfe der flood-filling networks (FFN).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).