idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.07.2018 14:04

Was passiert in einer Solarzelle, wenn das Licht ausgeht?

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

    Was in einer Solarzelle passiert, wenn das Licht ausgeht, hängt stark vom verwendeten Material ab. In herkömmlichen Siliziumsolarzellen ist die Antwort sehr einfach: der Strom, den die Zelle produziert, geht sofort auf Null zurück. Ganz anders ist dies in sogenannten Perowskitsolarzellen: Hier liefert die Zelle noch für einen kurzen Moment weiter Strom. Umgekehrt dauert es aber auch einen Moment, bis sie nach dem Einschalten des Lichts den vollen Strom liefert. Dieser ungewollte Effekt wird Hysterese genannt. Forscherinnen und Forscher des Max-Planck-Instituts für Polymerforschung in Mainz konnten nun die in einer Perowskitsolarzelle ablaufenden Prozesse mit hoher Präzision vermessen.

    Perowskitsolarzellen elektrisieren derzeit die Solarzellenforscher: Dieses neue, billige und einfach zu verarbeitende Material hat nahezu ideale physikalische Eigenschaften für die Umwandlung von Licht in elektrischen Strom: Da es pechschwarz ist, reicht eine hauchdünne Schicht von weniger als einem tausendstel Millimeter aus, um das gesamte einfallende Sonnenlicht zu absorbieren. Gleichzeitig ist es ein sehr guter elektrischer Leiter, der die erzeugten elektrischen Ladungen schnell und effizient an die Kontakte und daran angeschlossene Geräte abgeben kann. So können Perowskitsolarzellen heute mit einer Effizienz von 22,7 % bei der Umwandlung von Lichtenergie in elektrische Energie bereits die besten multikristallinen Siliziumsolarzellen übertreffen (22,3 %). Um die Effizienz weiter steigern zu können und um Perowskitsolarzellen fit für die Kommerzialisierung zu machen ist es jedoch für die Forscher sehr wichtig, alle Prozesse zu verstehen, die in der Solarzelle beim Betrieb auftreten.
    Gemeinsam mit Forschern der École polytechnique fédérale de Lausanne ist es der Gruppe um Juniorprofessor Dr. Stefan Weber und Gruppenleiter Dr. Rüdiger Berger (AK Prof. Butt) vom Max-Planck-Institut für Polymerforschung in Mainz gelungen, die Prozesse nach dem Ausschalten des Lichts zu entschlüsseln. Dazu haben die Forscher Solarzellen gezielt in der Mitte durchgebrochen und auf einer kleinen, wenige millionstel Meter breiten Fläche glattpoliert. In einem Rasterkraftmikroskop haben sie dann eine dünne Metallspitze über der Querschnittsfläche der Solarzelle positioniert. Diese Metallspitze ist an ihrem Ende nur etwa 10 Nanometer breit – mehr als zehntausendmal dünner als ein menschliches Haar. Mit dieser als Kelvinsondenmikroskopie bekannten Methode konnten die Forscher die elektrische Spannung auf der polierten Querschnittsfläche unmittelbar unter der Spitze ausmessen. Mit einer eigens entwickelten Varianter dieser Messtechnik konnten die Mainzer nicht nur räumlich, sondern auch zeitlich hochauflösend den Spannungsverlauf in den einzelnen Schichten der Solarzelle vermessen.
    Der Spannungsverlauf in der Solarzelle ist deshalb so interessant, weil er maßgeblich die Trennung der durch das Licht erzeugten elektrischen Ladungen beeinflusst: Aufgrund der elektrostatischen Kräfte wandern positive Ladungen zum Minuspol und negative Ladungen zum Pluspol der Spannung. Auf der beleuchteten Querschnittsfläche der Solarzelle entdeckten die Mainzer Wissenschaftler eine Ansammlung von Ladungen am Rand der Perowskitschicht, die auch nach dem Abschalten des Lichts noch für einen kurzen Augenblick stabil war. „Diese Ladungen an den Grenzflächen des Perowskits spielen die Hauptrolle für die Hysterese, da sie auch nach dem Ausschalten des Lichts für etwa eine halbe Sekunde ein elektrisches Feld in der Zelle aufrecht erhalten“, sagt Stefan Weber. „Umgekehrt bedeutet das, dass Hysterese durch gezielte Modifikationen an diesen Grenzflächen beeinflusst oder ganz unterdrückt werden kann.“ Dies ist ein wichtiger Schritt auf dem Weg zur Anwendung von Perowskitsolarzellen. Ihre Ergebnisse haben die Forscher kürzlich in dem renommierten Journal Energy Environmental Science veröffentlicht.

    Jun.-Prof. Dr. Stefan Weber
    Stefan Weber (geb. 1981) studierte Physik an der Universität Konstanz. Für seine Doktorarbeit kam er 2007 ans Max-Planck-Institut für Polymerforschung, wo er in einem Deutsch-Koreanischen Graduiertenkolleg mit Kraftmikroskopie organische elektronische Materialien erforschte. Anschließend ging er ans University College Dublin, wo er sich mit hochauflösender Kraftmikroskopie an flüssig-festen Grenzflächen beschäftigte. Seit 2012 ist er Gruppenleiter am MPI und seit 2014 Juniorprofessor im Fachbereich Physik der Johannes-Gutenberg-Universität Mainz. Seit seiner Doktorarbeit beschäftigt er sich mit der Anwendung und Weiterentwicklung von Rasterkraftmikroskopie. Damit möchte er grundlegende Mechanismen in Nanostrukturen verstehen, die z.B. in Solarzellenmaterialien vorkommen.

    Max-Planck-Institut für Polymerforschung
    Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerforschung. Durch die Fokussierung auf weiche Materie und makromolekulare Materialien ist das MPI-P mit seiner Forschungsausrichtung weltweit einzigartig. Seine Aufgabe ist es, neue Polymere herzustellen und zu charakterisieren. Zum Aufgabengebiet gehört auch die Untersuchung ihrer physikalischen und chemischen Eigenschaften. Das MPI-P wurde 1984 gegründet. Es beschäftigt mehr als 500 Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland, von denen die große Mehrzahl mit Forschungsaufgaben befasst ist.


    Wissenschaftliche Ansprechpartner:

    Jun.-Prof. Dr. Stefan Weber
    MPI für Polymerforschung, Physik der Grenzflächen
    Ackermannweg 10
    55128 Mainz
    Tel.: +49 6131 379-115
    webers@mpip-mainz.mpg.de


    Originalpublikation:

    Weber, S.A.L; Hermes, I.M.; Turren Cruz, S.H.; Gort, C.; Bergmann, V.W.; Gilson, L; Hagfeldt, A.; Grätzel, M; Tress, W; and Berger, R. How the Formation of Interfacial Charge Causes Hysteresis in Perovskite Solar Cells, Energy Environmental Science (http://dx.doi.org/10.1039/C8EE01447G)


    Weitere Informationen:

    http://www2.mpip-mainz.mpg.de/~webers/ - Gruppenseite von Jun.-Prof. Stefan Weber
    http://www2.mpip-mainz.mpg.de/~berger/ - Gruppenseite von Dr. Rüdiger Berger
    http://www.mpip-mainz.mpg.de - Max-Planck-Institut für Polymerforschung


    Bilder

    Jun.-Prof. Stefan Weber mit einer Solarzelle in der Hand
    Jun.-Prof. Stefan Weber mit einer Solarzelle in der Hand
    © MPI-P
    None

    Künstlerische Darstellung der Schicht-Struktur in einer Perovskit-Solarzelle. Mit einer Spitze über der Oberfläche können die Spannungsverhältnisse in der Zelle gemessen werden.
    Künstlerische Darstellung der Schicht-Struktur in einer Perovskit-Solarzelle. Mit einer Spitze über ...
    © MPI-P
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Elektrotechnik, Energie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Jun.-Prof. Stefan Weber mit einer Solarzelle in der Hand


    Zum Download

    x

    Künstlerische Darstellung der Schicht-Struktur in einer Perovskit-Solarzelle. Mit einer Spitze über der Oberfläche können die Spannungsverhältnisse in der Zelle gemessen werden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).