idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.08.2018 15:50

New water simulation captures small details even in large scenes

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    Method bridges gap between efficient computing and realistic water wave simulations
    Novel artistic tools simplify and extend capabilities for game and movie effects

    When designers select a method for simulating water and waves, they have to choose either fast computation or realistic effects; state-of-the-art methods are only able to optimize one or the other. Now, a method developed by researchers at the Institute of Science and Technology Austria (IST Austria) and NVIDIA bridges this gap. Their simulation method can reproduce complex interactions with the environment and tiny details over huge areas—all in real time. Moreover, the basic construction of the method allows graphics designers to easily create artistic effects. The authors will present their work at the annual top conference for computer graphics: SIGGRAPH 2018, where IST Austria researchers are presenting a total of five different projects.

    Current water wave simulations are based on one of two available methods. “Fourier-based” methods are efficient but cannot model complicated interactions, such as water hitting shore of an island. “Numerical” methods, on the other hand, can simulate a wide range of such effects, but are much more expensive computationally. As a result, “scenes with details at the level of tiny waves and with environmental interactions at the level of kilometer-long islands were either impossible or completely impractical,” says Chris Wojtan, professor at IST Austria. “Our method makes that breadth of scale and range possible, in real time.” The team behind the new method comprises Tomáš Skřivan of IST Austria, as well as Stefan Jeschke, Matthias Müller-Fischer, Nuttapong Chentanez, and Miles Macklin of NVIDIA, in addition to Wojtan.

    Achieving all of this required ingenuity, as well as a deep understanding of the basic physics involved. “We encoded the waves with different physical parameters than people previously used,” explains Wojtan. “Essentially, this gave us values that changed much more slowly, which is what allowed us to simulate small details at very large resolution.” These details make possible a variety of effects that were previously unattainable or extremely expensive computationally, such as objects landing realistically in water (or even thousands of objects landing simultaneously!), or water reflecting off the sides of a moving boat.

    Jeschke, first author and former IST Austria postdoc, emphasizes the possible applications in creating detailed and artistic simulations, for instance for games, films, or virtual reality programs. “The combination of range, detail, and computational speed represents a big step forward for the industry,” he says. “Plus, because of how we encode our simulation, it is easy to manipulate it and model water flow in varying environments like rivers or oceans. Our method allows artists to easily ‘overwrite’ nature, and create scenes faster than ever before.” The team has already designed one such tool: the “wave-painter” works like the paintbrush in a drawing program, increasing the height of the waves as the artist “draws” on a particular area. The wave-painter can also be adapted to create waves flowing in a particular direction as seen in rivers, for example.

    Watch the simulation in action here:
    http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat...
    and here:
    http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat...

    Project page (including paper): http://visualcomputing.ist.ac.at/publications/2018/WSW/

    About IST Austria

    The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at


    Wissenschaftliche Ansprechpartner:

    Stefan Jeschke
    jeschke@stefan-jeschke.com


    Originalpublikation:

    Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan. 2018. Water Surface Wavelets. ACM Trans. Graph. 37, 4, Article 1 (August 2018), 13 pages. https://doi.org/10.1145/3197517.3201336
    http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat...


    Weitere Informationen:

    http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat... Example of simulations
    http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat... More examples
    http://visualcomputing.ist.ac.at/publications/2018/WSW/ Project page


    Bilder

    A frame from a real-time animation. The simulation covers a huge area with hundreds of floating objects, but can still include tiny details visible only at close range.
    A frame from a real-time animation. The simulation covers a huge area with hundreds of floating obje ...
    Stefan Jeschke
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Tagungen
    Englisch


     

    A frame from a real-time animation. The simulation covers a huge area with hundreds of floating objects, but can still include tiny details visible only at close range.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).